BZOJ 4318: OSU! 期望DP
4318: OSU!
题目连接:
http://www.lydsy.com/JudgeOnline/problem.php?id=4318
Description
osu 是一款群众喜闻乐见的休闲软件。
我们可以把osu的规则简化与改编成以下的样子:
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。
Input
第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。
Output
只有一个实数,表示答案。答案四舍五入后保留1位小数。
Sample Input
3
0.5
0.5
0.5
Sample Output
6.0
Hint
【样例说明】
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0
N<=100000
题意
题解:
如果这个位置是0,那么贡献为0,如果这个位置是1,那么贡献为(x+1)3-x3=3x^2+3x+1,x为当前1长度的期望
然后扫一遍就好了,维护一个x的期望,和x^2的期望
代码
#include<bits/stdc++.h>
using namespace std;
int n;
double dp[100005][3];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
double x;scanf("%lf",&x);
dp[i][0]=(dp[i-1][0]+1)*x;
dp[i][1]=(dp[i-1][1]+2*dp[i-1][0]+1)*x;
dp[i][2]=dp[i-1][2]+(3*dp[i-1][1]+3*dp[i-1][0]+1)*x;
}
printf("%.1f\n",dp[n][2]);
}
BZOJ 4318: OSU! 期望DP的更多相关文章
- bzoj 4318 OSU! —— 期望DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...
- BZOJ - 4318: OSU! (期望DP&Attention)
Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...
- BZOJ 4318 OSU! ——期望DP
这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...
- 【BZOJ】4318: OSU! 期望DP
[题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...
- BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP
这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...
- BZOJ 4318 OSU! (概率DP)
题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...
- ●BZOJ 4318 OSU!
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...
- 【BZOJ4318】OSU! 期望DP
[BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...
- bzoj 4318 OSU!
期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...
随机推荐
- WCF服务通过防火墙怎么设置
设置防火墙 1.首先点击控制面板->系统与安全->Window防火墙->点击允许程序通过Windows防火墙 2.查找Windows Communication Foundation ...
- Php 笔记3-----php与 asp的等价关系
对比asp.net 与 php的对比 ,有助于进一步理解 php. 1 输出. asp.net 输出 Response.Write(str); // 将string 写入到 服务器向浏 ...
- LR之录制SQL脚本
1.选择协议 ①MS SQL serve ②ODBC 一般情况下选ODBC 2.录制步骤
- C.xml
pre{ line-height:1; color:#1e1e1e; background-color:#f0f0f0; font-size:16px;}.sysFunc{color:#627cf6; ...
- javascript --- 面向对象 --- 封装
javascript中有原型对象和实例对象 如有疑问请参考:http://www.ruanyifeng.com/blog/2010/05/object-oriented_javascript_enca ...
- java 开发环境
jdk:包括jre,自己下载即可. 客户端只需安装jre即可. 安装路径:C:\jdk7.0\jdk1.7.0_25\bin (适时更改) 环境变量是从前往后找 测试成功:cmd java ...
- 理解display:inline、block、inline-block
要理解display:inline.block.inline-block的区别,需要先了解HTML中的块级(block)元素和行级(inline)元素的特点,行内元素也叫内联元素. 块级元素 总是另起 ...
- 《学习OpenCV》练习题第四章第二题
#include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...
- cocos2d 设置按钮不可用
需要两步设置按钮变灰,然后不可点击 btnBuy.setBright(false); btnBuy.setTouchEnabled(false); 或者直接不显示按钮 btnBuy.setEnable ...
- show index 之Cardinality (mysql)
show index 之Cardinality 官方文档的解释: Cardinality An estimate of the number of unique values in the inde ...