http://poj.org/problem?id=2449

Remmarguts' Date
Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 18168   Accepted: 4984

Description

"Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, he told them a story. 
"Prince Remmarguts lives in his kingdom UDF – United Delta of Freedom. One day their neighboring country sent them Princess Uyuw on a diplomatic mission." 
"Erenow, the princess sent Remmarguts a letter, informing him that she would come to the hall and hold commercial talks with UDF if and only if the prince go and meet her via the K-th shortest path. (in fact, Uyuw does not want to come at all)" 
Being interested in the trade development and such a lovely girl, Prince Remmarguts really became enamored. He needs you - the prime minister's help! 
DETAILS: UDF's capital consists of N stations. The hall is numbered S, while the station numbered T denotes prince' current place. M muddy directed sideways connect some of the stations. Remmarguts' path to welcome the princess might include the same station twice or more than twice, even it is the station with number S or T. Different paths with same length will be considered disparate. 

Input

The first line contains two integer numbers N and M (1 <= N <= 1000, 0 <= M <= 100000). Stations are numbered from 1 to N. Each of the following M lines contains three integer numbers A, B and T (1 <= A, B <= N, 1 <= T <= 100). It shows that there is a directed sideway from A-th station to B-th station with time T. 
The last line consists of three integer numbers S, T and K (1 <= S, T <= N, 1 <= K <= 1000).

Output

A single line consisting of a single integer number: the length (time required) to welcome Princess Uyuw using the K-th shortest path. If K-th shortest path does not exist, you should output "-1" (without quotes) instead.

Sample Input

2 2
1 2 5
2 1 4
1 2 2

Sample Output

14

Source

POJ Monthly,Zeyuan Zhu
 
【题解】:

给定一个图,求起点到终点的第k短路。

分析:先用dijkstra从t反向寻找最短路。然后使用A*算法,把f(i)=g(i) + h(i)。h(i)就是i点到t的最短距离。当某点出队次数达到k次的时候,结果为该点的当前路程+该点到t的最短距离。(我没有判断不连通的情况)

为什么这样做是对的呢?我们这样来思考,如果不实用最短路,而只使用A*那么t第x次出队的结果即为第x短路的距离。继而可以想到,从第一个出队次数达到x的点,沿着最短路走到t,一定是第x短路。

说实话我也没有完全理解。

另外注意s==t的情况,据说k要++,不明白为啥。

这个题用来测第k短路的模板真的再好不过了,累计我wa在这么几个地方:
1.起点和终点是同一点时一定要走,不能输出0;
2.用普通邻接矩阵的话要注意重边的问题(所以强烈推荐邻接表水所有题);

【code】:

 /**
Judge Status:Accepted Memory:9252K
Time:204MS Language:G++
Code Length:2590B Author:cj
*/ #include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<string.h> #define N 1005
#define M 200100
#define INF 1000000000
using namespace std; struct Edge
{
int v,next,c;
}edge[M]; struct Nod //A*中的优先队列数据类型
{
int v,d,h;
}; struct Dj //dijkstra中的优先队列数据类型
{
int u,dis;
}; bool operator < (Dj a,Dj b) //dijkstra中的优先对队重载<号
{
return b.dis<a.dis;
} bool operator < (Nod a,Nod b) //A*中的优先队列重载<号
{
return b.h+b.d<a.h+a.d;
} int head[N];
int tail[N];
int dis[N];
int visit[N];
int edge_cnt;
int cnt[N]; void init() //初始化
{
memset(head,-,sizeof(head));
memset(tail,-,sizeof(tail));
edge_cnt = ;
memset(visit,,sizeof(visit));
memset(cnt,,sizeof(cnt));
} void addEdge(int a,int b,int c)
{
edge[edge_cnt].v = b;
edge[edge_cnt].c = c;
edge[edge_cnt].next = head[a];
head[a] = edge_cnt++; //记录起始边 edge[edge_cnt].v = a;
edge[edge_cnt].c = c;
edge[edge_cnt].next = tail[b];
tail[b] = edge_cnt++; //记录结束边
}
void Dijkstra(int n,int t) //对于以各点为起点到t点的最短路径
{
priority_queue<Dj> p_q;
Dj now,temp;
int i;
for(i=;i<=n;i++) dis[i]=INF;
dis[t] = ;
temp.dis = ;
temp.u = t;
p_q.push(temp);
while(!p_q.empty())
{
temp = p_q.top();
p_q.pop();
if(visit[temp.u]) continue;
visit[temp.u] = ;
for(i=tail[temp.u];i!=-;i=edge[i].next)
{
int v = edge[i].v;
if(dis[v]>dis[temp.u]+edge[i].c)
{
dis[v]=dis[temp.u]+edge[i].c;
now.u = v;
now.dis = dis[v];
p_q.push(now);
}
}
}
} int Astar_Kth(int s,int t,int k)
{
Nod cur,nxt;
priority_queue<Nod> p_q;
cur.v = s;
cur.d = ;
cur.h = dis[s];
p_q.push(cur);
while(!p_q.empty())
{
cur = p_q.top();
p_q.pop();
cnt[cur.v]++;
if(cnt[cur.v]>k) continue;
if(cnt[t]==k) return cur.d;
int i;
for(i=head[cur.v];i!=-;i=edge[i].next)
{
int v = edge[i].v;
nxt.d = cur.d + edge[i].c;
nxt.v = v;
nxt.h = dis[v];
p_q.push(nxt);
}
}
return -;
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
int i;
int a,b,c;
init();
for(i=;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
addEdge(a,b,c);
}
int s,t,k;
scanf("%d%d%d",&s,&t,&k);
if(s==t) k++;
Dijkstra(n,t);
printf("%d\n",Astar_Kth(s,t,k));
return ;
}

poj 2449 Remmarguts' Date(第K短路问题 Dijkstra+A*)的更多相关文章

  1. poj 2449 Remmarguts' Date (k短路模板)

    Remmarguts' Date http://poj.org/problem?id=2449 Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  2. POJ 2449 - Remmarguts' Date - [第k短路模板题][优先队列BFS]

    题目链接:http://poj.org/problem?id=2449 Time Limit: 4000MS Memory Limit: 65536K Description "Good m ...

  3. poj 2449 Remmarguts' Date 第k短路 (最短路变形)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 33606   Accepted: 9116 ...

  4. poj 2449 Remmarguts' Date(K短路,A*算法)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013081425/article/details/26729375 http://poj.org/ ...

  5. POJ 2449 Remmarguts' Date ( 第 k 短路 && A*算法 )

    题意 : 给出一个有向图.求起点 s 到终点 t 的第 k 短路.不存在则输出 -1 #include<stdio.h> #include<string.h> #include ...

  6. 【POJ】2449 Remmarguts' Date(k短路)

    http://poj.org/problem?id=2449 不会.. 百度学习.. 恩. k短路不难理解的. 结合了a_star的思想.每动一次进行一次估价,然后找最小的(此时的最短路)然后累计到k ...

  7. 【POJ】2449.Remmarguts' Date(K短路 n log n + k log k + m算法,非A*,论文算法)

    题解 (搬运一个原来博客的论文题) 抱着板题的心情去,结果有大坑 就是S == T的时候也一定要走,++K 我发现按照论文写得\(O(n \log n + m + k \ log k)\)算法没有玄学 ...

  8. poj 2449 Remmarguts' Date K短路+A*

    题目链接:http://poj.org/problem?id=2449 "Good man never makes girls wait or breaks an appointment!& ...

  9. 图论(A*算法,K短路) :POJ 2449 Remmarguts' Date

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 ...

随机推荐

  1. poj 3565 二分图最优匹配

    思路: 将ant与tree之间用距离来做权值,求最小权匹配就可以了.可以想到,如果有两条线段相交,那么将这两个线段交换一个顶点,使其不相交,其权值和一定会更小. 就像斜边永远比直角边长一样的道理. # ...

  2. 截图技巧——鼠标按着不懂,同时点击截图快捷键(QQ为ctrl+alt+a)即可避免按下快捷键鼠标按下等操作消失截不到的尴尬。

    截图技巧--鼠标按着不懂,同时点击截图快捷键(QQ为ctrl+alt+a)即可避免按下快捷键鼠标按下等操作消失截不到的尴尬.

  3. arguments的用法

    arguments 对象 在函数代码中,使用特殊对象 arguments,开发者无需明确指出参数名,就能访问它们. 例如,在函数 sayHi() 中,第一个参数是 message.用 argument ...

  4. Asp.net中基于Forms验证的角色验证授权

    Asp.net的身份验证有有三种,分别是"Windows | Forms | Passport",其中又以Forms验证用的最多,也最灵活. Forms 验证方式对基于用户的验证授 ...

  5. Visual Studio Gallery

    Web Essentials :对CSS.JavaScript和HTML都提供了很多快捷的功能支持.http://vswebessentials.com/features/general Web Co ...

  6. vs如何新建自己工程的环境变量(局部)和 Windows系统(全局).

    来源:http://blog.csdn.net/jtop0/article/details/7574139        在vs2008的Project->Property设置里经常会看到类似$ ...

  7. Swift内存管理-示例讲解

    具体而言,Swift中的ARC内存管理是对引用类型的管理,即对类所创建的对象采用ARC管理.而对于值类型,如整型.浮点型.布尔型.字符串.元组.集合.枚举和结构体等,是由处理器自动管理的,程序员不需要 ...

  8. FastSocket学习笔记~制定自已的传输协议

    对于TCP或者UDP来说,它们作于传输层的协议,有着自己的标准,或者叫格式,在我们看TCP格式之前先了解一下计算机的基础知识,字节,它是计算机世界的一个小单位,也是我们可以理会到的,如一个utf-8英 ...

  9. MVC3 ViewBage 输出的值 被编码

    问题描述:       后台,Actoin中我向ViewBage中加入了一个json ViewBage.JsonDateMenu ="[{\"id\":2,\" ...

  10. 广度优先算法BFS

    package myalgorithm; import java.util.Arrays; import java.util.LinkedList; import java.util.Queue; / ...