2乌龟棋

题目背景

小明过生日的时候,爸爸送给他一副乌龟棋当作礼物。

题目描述

乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数)。棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。

乌龟棋中M张爬行卡片,分成4种不同的类型(M张卡片中不一定包含所有4种类型的卡片,见样例),每种类型的卡片上分别标有1、2、3、4四个数字之一, 表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数。游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬行卡片,控制乌龟棋子前进相应
的格子数,每张卡片只能使用一次。

游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。

很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。

现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗?

输入输出格式

输入格式:

输入文件的每行中两个数之间用一个空格隔开。

第1行2个正整数N和M,分别表示棋盘格子数和爬行卡片数。

第2行N个非负整数,a1a2……aN,其中ai表示棋盘第i个格子上的分数。

第3行M个整数,b1b2……bM,表示M张爬行卡片上的数字。

输入数据保证到达终点时刚好用光M张爬行卡片。

输出格式:

输出只有1行,1个整数,表示小明最多能得到的分数。

输入输出样例

输入样例#1:

9 5
6 10 14 2 8 8 18 5 17
1 3 1 2 1

输出样例#1:

73

说明

每个测试点1s
小明使用爬行卡片顺序为1,1,3,1,2,得到的分数为6+10+14+8+18+17=73。注意,由于起点是1,所以自动获得第1格的分数6。

对于30%的数据有1≤N≤30,1≤M≤12。

对于50%的数据有1≤N≤120,1≤M≤50,且4种爬行卡片,每种卡片的张数不会超过20。

对于100%的数据有1≤N≤350,1≤M≤120,且4种爬行卡片,每种卡片的张数不会超过40;0≤ai≤100,1≤i≤N;1≤bi≤4,1≤i≤M。

【思路】

线性DP。

设f[a][b][c][d]表示1卡用a张2卡用b张3卡用c张4卡用d张后所能够得到的最大值。则转移方程:

f[a][b][c][d]=max{f[a-1][b][c][d], f[a][b-1][c][d],
f[a][b][c-1][d], f[a][b][c][d-1]);

  本来想加一个i表示目前的位置但是知道各卡片的使用情况就可以计算出目前的位置,所以没必要多次一举。由此:状态在满足可以充分描绘情况的基础上一定要精简。

 #include<iostream>
#include<cstring>
#define FOR(i,j,k) for(int i=(j);i<=(k);i++)
using namespace std; const int maxn = +; int n,m;
int A[maxn*],cnt[];
int f[maxn][maxn][maxn][maxn]; void dp() {
FOR(a,,cnt[]) FOR(b,,cnt[])
FOR(c,,cnt[]) FOR(d,,cnt[]) {
int &ans=f[a][b][c][d];
if(a) ans=max(ans,f[a-][b][c][d]);
if(b) ans=max(ans,f[a][b-][c][d]);
if(c) ans=max(ans,f[a][b][c-][d]);
if(d) ans=max(ans,f[a][b][c][d-]);
ans += A[+*a+*b+*c+*d];
}
cout<<f[cnt[]][cnt[]][cnt[]][cnt[]];
} int main() {
ios::sync_with_stdio(false);
cin>>n>>m;
FOR(i,,n) cin>>A[i];
FOR(i,,m){
int x; cin>>x;
cnt[x]++;
}
dp();
return ;
}

NOIP2010 乌龟棋的更多相关文章

  1. NOIP2010乌龟棋[DP 多维状态]

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  2. CH5E01[NOIP2010] 乌龟棋[暴力]

    众所周知,由于这个人太菜了,所以她又来切上古水题了. 显然最多$40^4$种状态,暴力跑出可以拼出多少种状态,然后按序号从小到大对应的状态瞎转移即可. 我知道我想繁了,但是不想改了,因为思路一出来,没 ...

  3. tyvj 1402 乌龟棋 dp

    P1402 [NOIP2010]乌龟棋 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 NOIP2010提高组复赛第二题 描述 小明过生日的时候,爸爸送给他一 ...

  4. NOIP2010提高组乌龟棋 -SilverN

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  5. CJOJ 1087 【NOIP2010】乌龟棋 / Luogu 1541 乌龟棋(动态规划)

    CJOJ 1087 [NOIP2010]乌龟棋 / Luogu 1541 乌龟棋(动态规划) Description 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 乌龟棋的棋盘是一行N个格子,每个 ...

  6. [NOIP2010] 提高组 洛谷P1541 乌龟棋

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  7. 【NOIP2010】【P1317】乌龟棋

    似乎很像搜索的DP(应该也可以用搜索写) 原题: 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物.乌龟棋的棋盘是一行N 个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N 格是终点, ...

  8. 【洛谷1541】【CJOJ1087】【NOIP2010】乌龟棋

    题面 Description 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌 ...

  9. luoguP1541 乌龟棋 题解(NOIP2010)

    P1541 乌龟棋 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cma ...

随机推荐

  1. JAVA CAS单点登录(SSO) 教程

    一.教程前言 教程目的:从头到尾细细道来单点登录服务器及客户端应用的每个步骤 单点登录(SSO):请看百科解释猛击这里打开 本教程使用的SSO服务器是Yelu大学研发的CAS(Central Auth ...

  2. ./configure详解

    'configure'脚本有大量的命令行选项.对不同的软件包来说,这些选项可能会有变化,但是许多基本的选项是不会改变的.带上'--help'选项执行'configure'脚本可以看到可用的所有选项.尽 ...

  3. hibernate hql 大全

    Hibernate配备了一种非常强大的查询语言,这种语言看上去很像SQL.但是不要被语法结构 上的相似所迷惑,HQL是非常有意识的被设计为完全面向对象的查询,它可以理解如继承.多态 和关联之类的概念. ...

  4. POJ 1850 Code(组合数)

    http://poj.org/problem?id=1850 题意 :给定字符串,系统是用字符串组成的,字符串是按字典序排的.编码系统有三条规则,1这些的单词的长度是由小到大的,2相同长度的按字母在字 ...

  5. Java 方法覆盖和方法重载

    方法重载(overloaded),要求方法的名称相同,参数列表不相同. 方法覆盖(override),要求①方法名相同,②参数列表相同,③返回值相同 如果是方法覆盖,要注意以下几种情况: 1.子类方法 ...

  6. ASP.NET 访问 MySql

    1. 首先需要安装mysql, 脚本之家下载地址: http://www.jb51.net/softs/2193.html 或者去mysql.com官网都可以,一路next,安装好后,有个简单配置,提 ...

  7. [codility]Min-abs-sum

    https://codility.com/demo/take-sample-test/delta2011/ 0-1背包问题的应用.我自己一开始没想出来.“首先对数组做处理,负数转换成对应正数,零去掉, ...

  8. Android:实现退出确认对话框

    在Android平台上捕获Back键的事件,super.onBackPressed()是执行系统的默认动作,就是退出当前activity,我们要做的就是重写onBackPressed()函数, pub ...

  9. ubuntu 解决依赖问题

    安装aptitude包管理器 然后用aptitude安装 sudo aptitude install ***

  10. [转载]12款免费与开源的NoSQL数据库介绍

    Naresh Kumar是位软件工程师与热情的博主,对于编程与新事物拥有极大的兴趣,非常乐于与其他开发者和程序员分享技术上的研究成果.近日,Naresh撰文谈到了12款知名的免费.开源NoSQL数据库 ...