管理Java垃圾回收的五个建议
【编者按】本文作者是Niv Steingarten,是Takipi 的联合创始人,热衷于编写优雅简洁的代码。作者通过对垃圾收集器的介绍和梳理,在管理垃圾回收方面提出了五个建议,降低收集器开销,帮助大家进一步提升项目性能。本文系国内 ITOM 管理平台 OneAPM 工程师编译整理。
保持GC低开销最实用的建议是什么?
早有消息声称Java 9即将发布,但如今却一再推迟,其中比较值得关注的是G1(“Garbage-First”)垃圾收集器将成为HotSpot JVM的默认收集器。从串行收集器到CMS收集器,在整个生命周期中JVM已历经多代GC的实现和更新,而接下来,G1收集器将谱写新的篇章。
随着垃圾收集器的持续发展,每一代都会进行改善和提高。在串行收集器之后的并行收集器利用多核机器强大的计算能力,实现了垃圾收集多线程。而之后的CMS(Concurrent Mark-Sweep)收集器,将收集分为多个阶段执行,允许在应用线程运行同时进行大量的收集,大大降低了“stop-the-world”全局停顿的出现频率。而现在,G1在JVM上加入了大量堆和可预测的均匀停顿,有效地提升了性能。
尽管GC不断在完善,其致命弱点还是一样:多余的和不可预知的对象分配。但本文中提出了一些高效的长期实用的建议,不管你选择哪种垃圾收集器,都可以帮助你降低GC开销。
建议1:预测收集能力
所有的Java标准集合和大多数自定义的扩展实现(如Trove 和谷歌的Guava),都会使用底层数组(无论基于原始或基于对象)。数据的长度一旦分配后,数组就不可变了,所以在许多情况下,为集合增加项目可能会导致老的底层数组被删除,然后需要重新分配一个更大的数组来替代。
大多数的集合实现都尝试在集合没有被设置为预期大小时,还能对重分配过程进行优化,并降低其开销。但是,最好的结果还是在构造集合时就设置成预期大小。
让我们看一下下面这个简单的例子:
public static List reverse(List<? extends T> list) {
List result = new ArrayList();
for (int i = list.size() - 1; i >= 0; i--) {
result.add(list.get(i));
}
return result;
}
以上方法分配了一个新的数组,再将另一个列表的项目填充其中,但只能按倒序填充。
但是,难就难在如何优化增加项目到新列表这一步骤。每次添加后,该列表还需确保其底层数组有足够的空槽能装下新项目。如果能装下,它就会直接在下一个空槽中存储新项目;但如果空间不够,它就会重新分配一个底层数组,将旧数组的内容复制到新数组中,然后再添加新项目。这一过程会导致分配的多个数组都会占据内存,直到GC最后来回收。
所以,我们可以在构建时告知数组需容纳多少个项目,重构后的代码如下:
public static List reverse(List<? extends T> list) {
List result = new ArrayList(list.size());
for (int i = list.size() - 1; i >= 0; i--) {
result.add(list.get(i));
}
return result;
}
这样一来,可以保证ArrayList构造函数在最初配置时就能容纳下list.size()个项目,这意味着它不需要再在迭代中重新分配内存。
Guava的集合类则更加先进,允许我们用一个确切数量或估计值来初始化集合。
List result = Lists.newArrayListWithCapacity(list.size());
List result = Lists.newArrayListWithExpectedSize(list.size());
第一行代码是我们知道有多少项目需要存储的情况,第二行会分配一些多余填充以适应预估误差。
建议2:直接用处理流
当处理数据流时,如从文件中读取数据或从网上下载数据,例如,我们通常可以从数据流中有所发现:
byte[] fileData = readFileToByteArray(new File("myfile.txt"));
由此产生的字节数组可以被解析为XML文档、JSON对象或协议缓冲消息,来命名一些常用选项。
当处理大型或未知大小的文件时,这个想法则不适用了,因为当JVM无法分配文件大小的缓冲区时,则会出现OutOfMemoryErrors错误。
但是,即使数据大小看似能管理,当涉及到垃圾回收时,上述模式仍会造成大量开销,因为它在堆上分配了相当大的blob来容纳文件数据。
更好的处理方式是使用合适的InputStream(本例中是FileInputStream),并直接将其送到分析器,而不是提前将整个文件读到字节数组中。所有主要库会将API直接暴露给解析流,例如:
FileInputStream fis = new FileInputStream(fileName);
MyProtoBufMessage msg = MyProtoBufMessage.parseFrom(fis);
建议3:使用不可变对象
不变性有诸多优势,但有一个优势却极少被重视,那就是不变性对垃圾回收的影响。
不可变对象是指对象一旦创建后,其字段(本例中指非原始字段)将无法被修改。例如:
public class ObjectPair {
private final Object first;
private final Object second;
public ObjectPair(Object first, Object second) {
this.first = first;
this.second = second;
}
public Object getFirst() {
return first;
}
public Object getSecond() {
return second;
}
}
实例化上面类的结果为不可变对象——所有的字段一旦标记后则不能再被修改。
不变性意味着在构造容器完成之前,由不可变容器引用的所有对象都已经创建。在GC看来:容器会和其最新的新生代保持一致。这意味着当对新生代(young generations)执行垃圾回收周期时,GC可以跳过老年代(older generations)中的不可变对象,因为它知道不可变对象不能引用新生代的任何内容。
越少对象扫描意味着需扫描的内存页越少,而越少的内存页扫描意味着GC周期越短,同时也预示着更短的GC停顿和更好的整体吞吐量。
建议4:慎用字符串连接
字符串可能是任何基于JVM的应用中最普遍的非原始数据结构。但是,其隐含重量和使用便利性使得它们成为应用内存变大的罪魁祸首。
很明显,问题不在于被内联和拘留的文字字符串,而在于字符串在运行时被分配和构建。接下来看看构建动态字符串的简单示例:
public static String toString(T[] array) {
String result = "[";
for (int i = 0; i < array.length; i++) {
result += (array[i] == array ? "this" : array[i]);
if (i < array.length - 1) {
result += ", ";
}
}
result += "]";
return result;
}
获取数组并返回它的字符串表示是一个很不错的方法,但这也正是对象分配的问题所在。
要看到其背后所有的语法糖并不容易,但真正的幕后场景应该是这样:
public static String toString(T[] array) {
String result = "[";
for (int i = 0; i < array.length; i++) {
StringBuilder sb1 = new StringBuilder(result);
sb1.append(array[i] == array ? "this" : array[i]);
result = sb1.toString();
if (i < array.length - 1) {
StringBuilder sb2 = new StringBuilder(result);
sb2.append(", ");
result = sb2.toString();
}
}
StringBuilder sb3 = new StringBuilder(result);
sb3.append("]");
result = sb3.toString();
return result;
}
字符串是不可变的,所以在其连接时并没有被修改,而是依次分配新的字符串。此外,编译器利用标准StringBuilder类来执行的这些链接。这就导致了双重麻烦,在每次循环迭代时,我们得到(1)隐式分配临时字符串,(2)隐式分配临时的StringBuilder对象来帮助我们构建最终结果。
避免上述问题的最佳方法是明确使用StringBuilder并直接附加给它,而不是使用略幼稚的串联运算符(“+”)。所以应该是这样:
public static String toString(T[] array) {
StringBuilder sb = new StringBuilder("[");
for (int i = 0; i < array.length; i++) {
sb.append(array[i] == array ? "this" : array[i]);
if (i < array.length - 1) {
sb.append(", ");
}
}
sb.append("]");
return sb.toString();
}
此时,在方法开始时我们只分配了StringBuilder。从这一点来看,所有的字符串和列表项都会被添加到唯一的StringBuilder中,最终只调用一次toString方法转换成字符串,然后返回结果。
建议5:使用专门的原始集合
Java的标准库非常方便且通用,支持使用集合绑定半静态类型。例如,如果要用一组字符串(Set<String>
),或一对字符串映射到字符串列表(Map<Pair, List<String>>
),直接利用标准库会非常方便。
事实上,问题之所以出现是因为我们想把double类型的值放在 int 类型的list集合或map映射中。由于泛型不能调用原始集合,则可以用包装类型代替,所以放弃List<int>
而使用List<Integer>
更好。
但其实这非常浪费,Integer本身就是一个完备对象,由12字节的对象头和内部4字节的整数字段组合而成,加起来每个Integer对象占16个字节,这是同样大小的基类int类型长度的4倍!然而,更大的问题是所有这些Integer实际上都是垃圾回收过程中的对象实例。
为了解决这个问题,我们在Takipi 中使用优秀Trove 集合库。Trove放弃了一些(但不是全部)支持专业高效内存的原始集合的泛型。例如,不用浪费的Map<Integer, Double>,而用专门的原始集合TintDoubleMap来替代更好:
TIntDoubleMap map = new TIntDoubleHashMap();
map.put(5, 7.0);
map.put(-1, 9.999);
...
Trove底层实现了原始数组的使用,所以在操作集合时没有装箱(int -> Integer)或拆箱(Integer -> int)发生,因此也不会将对象存储在基类中。
结语
随着垃圾收集器不断进步,以及实时优化和JIT编译器变得更加智能,作为开发者的我们,可以越来越少地操心代码的GC友好性。尽管如此,无论G1有多先进,在提高JVM方面,我们还有许多问题需要不断探索和实践,百尺竿头仍需更进一步。
(编译自:https://www.javacodegeeks.com/2015/12/5-tips-reducing-java-garbage-collection-overhead.html)
OneAPM 为您提供端到端的 Java 应用性能解决方案,我们支持所有常见的 Java 框架及应用服务器,助您快速发现系统瓶颈,定位异常根本原因。分钟级部署,即刻体验,Java 监控从来没有如此简单。想阅读更多技术文章,请访问 OneAPM 官方技术博客。
本文转自 OneAPM 官方博客
想知道更多关于 Java 性能优化的内容,请扫码关注下方的公众号:
管理Java垃圾回收的五个建议的更多相关文章
- Java垃圾回收学习笔记
通常来说,要写Java代码,你基本上都没必要听说垃圾回收这个概念的.这不,对于已经写了5年多Java代码的我来说,我还没有哪次经历说是需要使用垃圾回收方面的知识来解决问题的.但是,我依然督促自己花了几 ...
- Java之美[从菜鸟到高手演变]之JVM内存管理及垃圾回收
很多Java面试的时候,都会问到有关Java垃圾回收的问题,提到垃圾回收肯定要涉及到JVM内存管理机制,Java语言的执行效率一直被C.C++程序员所嘲笑,其实,事实就是这样,Java在执行效率方面确 ...
- Java内存管理和垃圾回收
笔记,深入理解java虚拟机 Java运行时内存区域 程序计数器,线程独占,当前线程所执行的字节码的行号指示器,每个线程需要记录下执行到哪儿了,下次调度的时候可以继续执行,这个区是唯一不会发生oom的 ...
- java基础(一):谈谈java内存管理与垃圾回收机制
看了很多java内存管理的文章或者博客,写的要么笼统,要么划分的不正确,且很多文章都千篇一律.例如部分地方将jvm笼统的分为堆.栈.程序计数器,这么分太过于笼统,无法清晰的阐述java的内存管理模型: ...
- JVM原理(Java代码编译和执行的整个过程+JVM内存管理及垃圾回收机制)
转载注明出处: http://blog.csdn.net/cutesource/article/details/5904501 JVM工作原理和特点主要是指操作系统装入JVM是通过jdk中Java.e ...
- java Vamei快速教程22 内存管理和垃圾回收
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 整个教程中已经不时的出现一些内存管理和垃圾回收的相关知识.这里进行一个小小的总结. ...
- Java内存管理及垃圾回收总结
概述 Java和C++的一个很重要的差别在于对内存的管理.Java的自己主动内存管理及垃圾回收技术使得Java程序猿不须要释放废弃对象的内存.从而简化了编程的过程.同一时候也避免了因程序猿的疏漏而导致 ...
- JVM内存管理及垃圾回收【转】
很多Java面试的时候,都会问到有关Java垃圾回收的问题,提到垃圾回收肯定要涉及到JVM内存管理机制,Java语言的执行效率一直被C.C++程序员所嘲笑,其实,事实就是这样,Java在执行效率方面确 ...
- [转载]深入理解Java垃圾回收机制
深入理解Java垃圾回收机制 2016-07-28 20:07:49 湖冰2019 阅读数 14607更多 分类专栏: JAVA基础 原文:http://www.linuxidc.com/Linu ...
随机推荐
- ionic2 页面加载时图片添加的问题
使用ionic2创建项目时,在app文件夹下有图片目录img 在home中引用图片,但是不论是用ng-src或者是src,代码如下: <ion-list> <ion-slides c ...
- flume+kafka (分区实现 默认单分区) (二)
这篇文章主要在上一篇文章的基础上讲一下 如何自定义flume到kafka的分区 上一节中从下面的地址下载了一个源码 https://github.com/beyondj2ee/flumeng-kafk ...
- uml的关联多重度
UML中关联的多重度是指一个类的实例能够与另一个类的多少个实例相关联,这个“多少”被称为关联角色的多重度指定关联一端的多重度.也可以这样理解:在关联另一端的类的每个对象要求在本端的类必须有多 少个对象 ...
- C++ 11 之初始化
1.4中不同初始化的形式 a.string s("zhl").int i(3); //括号初始化 b.string s="zhl".int ...
- 【OSG细节实现】节点围绕位于axisPos平行于axis的轴进行旋转
//绕着与axis平行的任意轴旋转 void rotate(const std::string& name, float angle, osg::Vec3 axisPos, osg::Vec3 ...
- 关于MD5加密的小知识
- (NSString *)MD5Hash { const char *cStr = [self UTF8String]; unsigned char result[16]; CC_MD5(cStr, ...
- 【风马一族_Python】 决策树
<机器学习实战>第三章 决策树 ------------------------------------- #1 trees.py 计算给定数据集的香农熵 ---------------- ...
- 《LDAP服务器和客户端的加密认证》RHEL6——第二篇 运维工程师必考
服务端的配置: (基于原先配好的ldap服务器)打开加密认证: Iptables –F setenforce 0 1.编辑ldap的配置文件:slapd.conf 2.启动ldap服务器: 3.切换 ...
- jquery效果- 显示和隐藏 淡入淡出 滑动 隐藏
jQuery 效果- 隐藏和显示:hide() 和 show() 规定隐藏/显示的速度,可以取以下值:"slow"."fast" 或毫秒 您可以使用 toggl ...
- Discuz X3.2 SEO设置 title 不支持空格的解决方法
很多使用 Discuz X3.2 的同学都发现这么一个问题:在后台SEO设置-title设定的时候,即使你在连字符两侧输入了空格,在前台也显示不出来,很多同学纠结这个问题,今天终于找到了解决方法,在此 ...