做这题建议看一下该题的discuss。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <set>
/* 题意:给出n张海报的左端点和右端点,按顺序往墙上贴。问最后整张墙能看到几张海报。 注意:按题意是如此够造树的,即每个点其实是一小块段。
|___|___|___|___|___|___|___|___|
1 2 3 4 5 6 7 8 思路:相当于染色问题,这里我每个节点有个color值。
color值有三种情况:1.0表示该区间为染色;2.-1表示该区间含有多种颜色;3.正整数表示该区间全是一种颜色
每次更新(即第i次“涂色”)的时候,如果区间在范围内,则该区间color值替换为此次的颜色(用i表示)。
最后查询的时候,从根节点往下查,直到查询到color值为某一个正整数,标记该颜色对应的序号。
最后统计有多少个标记,即为答案。 由于数据大,要离散化,这才是重点!!!
有些人离散化,直接按顺序相邻,即每次都只加1。这是错误的!!!
给个数据就明白了:
1
3
1 10
1 3
6 10
正确答案:3
错误答案:2
忽略了顺序相邻但位置不相邻的情况
如果直接按顺序离散:
1 4
1 2
3 4
那么1 2和3 4的就会覆盖掉1 4,得出错误结果2
即离散的时候3和6之间应该还要留出一段,即总共离散为5段,不然会把中间夹的给覆盖掉了 所以离散的时候,排好序后,如果两个相邻的仅相差1,那么对应的映射+1即可。
但如果相差大于1,则对应的映射+2,留出个空隙。 在discuss里会有人说,如果按这正确的方法做,提交会WA;全部改成+1,才AC。
其实+2导致WA的原因,是数组开的不够。
我原本开的是tree[maxn<<3]的大小,用正确做法做,WA;但开大后,tree[maxn<<4],就AC了。
也就是说,POJ上其实没有这类数据 */
using namespace std;
const int maxn=;
int n,m,idx;
int maxh; //对应映射的最大值
int hash_val[]; //对应的映射
int val[maxn*]; //存储端点的值
int vis[maxn]; //用来标记颜色
//存储海报的左端点、右端点
struct Pos{
int left,right;
}pos[maxn]; struct Node{
int color; //0:该区间没有染色;-1:该区间含多种颜色;正整数:该区间涂满一种颜色。
bool lazy;
}tree[maxn<<]; //10000个海报,每个海报两个端点,所以最多会有20000个点,但开4倍不够,要开8倍,这样+2的方法才能AC void build(int rt,int L,int R){
tree[rt].color=;
tree[rt].lazy=false;
if(L==R)
return;
int mid=(L+R)>>;
build(rt<<,L,mid);
build(rt<<|,mid+,R);
} void pushUp(int rt){
int lson=rt<<,rson=rt<<|;
//只要有一个子区间上面含多种颜色(color值为-1),该节点color值为-1
if(tree[lson].color==- || tree[rson].color==-)
tree[rt].color=-;
//两个子区间都没涂有颜色
else if(!tree[lson].color && !tree[rson].color)
tree[rt].color=;
//两个子区间各自都涂有一种颜色
else if(tree[lson].color && tree[rson].color){
if(tree[lson].color==tree[rson].color)
tree[rt].color=tree[lson].color;
else
tree[rt].color=-;
}
else{
//一个为0(即该区间没有染色),另一个为正数
tree[rt].color=tree[lson].color|tree[rson].color;
}
}
void pushDown(int rt){
if(tree[rt].lazy){
int lson=rt<<,rson=rt<<|;
tree[lson].color=tree[rson].color=tree[rt].color;
tree[lson].lazy=tree[rson].lazy=true;
tree[rt].lazy=false;
}
}
void update(int rt,int l,int r,int L,int R,int color){
if(l<=L && R<=r){
tree[rt].lazy=true;
tree[rt].color=color;
return;
}
pushDown(rt);
int mid=(L+R)>>;
if(r<=mid)
update(rt<<,l,r,L,mid,color);
else if(l>mid)
update(rt<<|,l,r,mid+,R,color);
else{
update(rt<<,l,mid,L,mid,color);
update(rt<<|,mid+,r,mid+,R,color);
}
pushUp(rt);
}
void query(int rt,int L,int R){
//下面两种情况已经包含了叶子节点,因为叶子节点的color只能为0或者>0,不可能为-1。所以不会RE
if(tree[rt].color>){
//如果该区间涂有一种颜色,则标记该颜色
vis[tree[rt].color]=;
return;
}
//如果区间没有染色,直接return。
if(!tree[rt].color){
return;
}
int mid=(L+R)>>;
query(rt<<,L,mid);
query(rt<<|,mid+,R);
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
idx=;
for(int i=;i<=n;i++){
scanf("%d%d",&pos[i].left,&pos[i].right);
val[idx++]=pos[i].left;
val[idx++]=pos[i].right;
}
sort(val,val+idx);
hash_val[val[]]=;
//离散
for(int i=;i<idx;i++){
if(val[i]==val[i-])
hash_val[val[i]]=hash_val[val[i-]];
//如果两个端点不相邻,则+2
else if(val[i]-val[i-]>)
hash_val[val[i]]=hash_val[val[i-]]+; //如果两个端点相邻,则+1.
else{
hash_val[val[i]]=hash_val[val[i-]]+;
}
maxh=hash_val[val[i]];
}
build(,,maxh);
for(int i=;i<=n;i++){
update(,hash_val[pos[i].left],hash_val[pos[i].right],,maxh,i);
}
memset(vis,,sizeof(vis));
query(,,maxh);
int ans=;
for(int i=;i<=n;i++){
if(vis[i]){
ans++;
}
}
printf("%d\n",ans);
}
return ;
}

POJ 2528 Mayor's posters (线段树,染色问题,离散化要注意)的更多相关文章

  1. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  2. POJ 2528 Mayor’s posters (线段树段替换 && 离散化)

    题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000).求出最后还能看见多少张海报. 分析 ...

  3. POJ 2528 Mayor's posters (线段树+区间覆盖+离散化)

    题意: 一共有n张海报, 按次序贴在墙上, 后贴的海报可以覆盖先贴的海报, 问一共有多少种海报出现过. 题解: 因为长度最大可以达到1e7, 但是最多只有2e4的区间个数,并且最后只是统计能看见的不同 ...

  4. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  5. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  6. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  7. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  8. poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  9. POJ 2528 Mayor's posters (线段树)

    题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...

  10. poj 2528 Mayor's posters(线段树)

    题目:http://poj.org/problem?id=2528 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度.现在往墙上贴N张海报,每张海报的宽度是任意的, 但是必定是单位宽度的整数 ...

随机推荐

  1. 分布式PostGIS系列【2】——pgpool-II

    一.pgpool-II简介 二.pgpool-II安装与配置 三.分布式Postgis性能测试

  2. NSTimer定时器类

    NSTimer是Cocoa中比较常用的定时器类,基本操作如下: handleTimer方法可以自行定义.在需要的地方创建timer即可,handleTimer就可以每0.5秒执行一次.   - (vo ...

  3. windows phone 手机截图

    无聊在商城找了一款小游戏玩,看到一个截屏功能,就google了一下具体实现,还是比较简单的,主要是靠WriteableBitmap(提供一个可写入并可更新的 BitmapSource)类实现.看一下m ...

  4. 玄机宝盒v1.6.1.1

    最新版本:玄机宝盒v1.6.1.1 玄机宝盒v1.6.1.1 04-14/2016 给你的将是无与伦比的体验http://bbs.msdn5.com/thread-15-1-1.html(出处: 玄机 ...

  5. 查看linux系统版本命令

    一.查看内核版本命令: 1) [root@SOR_SYS ~]# cat /proc/version Linux version 2.6.18-238.el5 (mockbuild@x86-012.b ...

  6. 为 WordPress 标签添加 rel="nofollow" 属性

    WordPress 标签默认并无 rel="nofollow" 属性.rel="nofollow" 属性的作用是:告诉搜索引擎,无需追踪目标页,禁止蜘蛛爬行和传 ...

  7. 用PHP判断客户端是否是手机

    <?php function isMobile(){ $useragent = isset($_SERVER['HTTP_USER_AGENT'])? $_SERVER['HTTP_USER_A ...

  8. python_day2_homework_1(简单购物商城)

    '''简单购物商城(要求):1,商品展示,价格2,买,加入购物车3,付款,钱不够''' 1 #_*_ coding: utf-8 _*_ __author__ = 'A-rno' meu_list_1 ...

  9. Log Parser 2.2

    Log Parser 2.2 是一个功能强大的通用工具,它可对基于文本的数据(如日志文件.XML 文件和 CSV 文件)以及 Windows 操作系统上的重要数据源(如事件日志.注册表.文件系统和 A ...

  10. oracle11g关于表空间的问题

    1.oracle11g默认的块大小为8K  每个表空间里面的单个数据文件最大为32G   (2^22-1) *4k   最多可以放1024个单个文件    SQL> show parameter ...