HDU3572 Task Schedule 【最大流】
Task Schedule
has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted
and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible
schedule every task that can be finished will be done before or at its end day.
Print a blank line after each test case.
2 4 3 1 3 5 1 1 4 2 3 7 3 5 9 2 2 2 1 3 1 2 2
Case 1: Yes Case 2: Yes
题意:有n个机器,m项任务,每一个任务须要Pi天时间,开工日期到收工日期为Si到Ei。一次仅仅能在一台机器上加工,能够挪到别的机器上,问是否能按期完毕全部任务。
题解:这题关键在构图,设置一个源点到每项任务有一条边,容量为该项任务所须要的天数,每项任务到合法加工日期内的每一个天数加一条边,容量为1,即每天工作量为1。然后每一个天数到汇点加入一条边,容量为机器数量n。表示一天最大加工量。
218ms
- #include <stdio.h>
- #include <string.h>
- #define maxn 1200
- #define maxm 700000
- #define inf 0x3f3f3f3f
- int head[maxn], n, m, id; // n machines
- struct Node {
- int u, v, c, next;
- } E[maxm];
- int source, sink, tar, maxDay, nv;
- int que[maxn], Layer[maxn], pre[maxn];
- bool vis[maxn];
- void addEdge(int u, int v, int c) {
- E[id].u = u; E[id].v = v;
- E[id].c = c; E[id].next = head[u];
- head[u] = id++;
- E[id].u = v; E[id].v = u;
- E[id].c = 0; E[id].next = head[v];
- head[v] = id++;
- }
- void getMap() {
- int i, j, u, v, p, s, e;
- id = tar = maxDay = 0;
- scanf("%d%d", &m, &n);
- memset(head, -1, sizeof(head));
- source = 0; sink = 705;
- for(i = 1; i <= m; ++i) {
- scanf("%d%d%d", &p, &s, &e);
- tar += p;
- if(e > maxDay) maxDay = e;
- addEdge(source, i, p);
- for(j = s; j <= e; ++j)
- addEdge(i, m + j, 1);
- }
- sink = m + maxDay + 1; nv = sink + 1;
- for(i = 1; i <= maxDay; ++i)
- addEdge(m + i, sink, n);
- }
- bool countLayer() {
- memset(Layer, 0, sizeof(int) * nv);
- int id = 0, front = 0, u, v, i;
- Layer[source] = 1; que[id++] = source;
- while(front != id) {
- u = que[front++];
- for(i = head[u]; i != -1; i = E[i].next) {
- v = E[i].v;
- if(E[i].c && !Layer[v]) {
- Layer[v] = Layer[u] + 1;
- if(v == sink) return true;
- else que[id++] = v;
- }
- }
- }
- return false;
- }
- int Dinic() {
- int i, u, v, minCut, maxFlow = 0, pos, id = 0;
- while(countLayer()) {
- memset(vis, 0, sizeof(bool) * nv);
- memset(pre, -1, sizeof(int) * nv);
- que[id++] = source; vis[source] = 1;
- while(id) {
- u = que[id - 1];
- if(u == sink) {
- minCut = inf;
- for(i = pre[sink]; i != -1; i = pre[E[i].u])
- if(minCut > E[i].c) {
- minCut = E[i].c; pos = E[i].u;
- }
- maxFlow += minCut;
- for(i = pre[sink]; i != -1; i = pre[E[i].u]) {
- E[i].c -= minCut;
- E[i^1].c += minCut;
- }
- while(que[id-1] != pos)
- vis[que[--id]] = 0;
- } else {
- for(i = head[u]; i != -1; i = E[i].next)
- if(E[i].c && Layer[u] + 1 == Layer[v = E[i].v] && !vis[v]) {
- vis[v] = 1; que[id++] = v; pre[v] = i; break;
- }
- if(i == -1) --id;
- }
- }
- }
- return maxFlow;
- }
- void solve(int cas) {
- printf("Case %d: %s\n\n", cas, tar == Dinic() ? "Yes" : "No");
- }
- int main() {
- // freopen("stdin.txt", "r", stdin);
- int t, cas;
- scanf("%d", &t);
- for(cas = 1; cas <= t; ++cas) {
- getMap();
- solve(cas);
- }
- return 0;
- }
62ms
- #include <stdio.h>
- #include <string.h>
- #define maxn 1200
- #define maxm 700000
- int head[maxn], n, m, id; // n machines
- struct Node {
- int u, v, c, next;
- } E[maxm];
- int source, sink, tar, maxDay, nv;
- const int inf = 0x3f3f3f3f;
- int cur[maxn], ps[maxn], dep[maxn];
- void addEdge(int u, int v, int c) {
- E[id].u = u; E[id].v = v;
- E[id].c = c; E[id].next = head[u];
- head[u] = id++;
- E[id].u = v; E[id].v = u;
- E[id].c = 0; E[id].next = head[v];
- head[v] = id++;
- }
- void getMap() {
- int i, j, u, v, p, s, e;
- id = tar = maxDay = 0;
- scanf("%d%d", &m, &n);
- memset(head, -1, sizeof(head));
- source = 0;
- for(i = 1; i <= m; ++i) {
- scanf("%d%d%d", &p, &s, &e);
- tar += p;
- if(e > maxDay) maxDay = e;
- addEdge(source, i, p);
- for(j = s; j <= e; ++j)
- addEdge(i, m + j, 1);
- }
- sink = m + maxDay + 1; nv = sink + 1;
- for(i = 1; i <= maxDay; ++i)
- addEdge(m + i, sink, n);
- }
- // 參数:顶点个数。源点,汇点
- int Dinic(int n, int s, int t) {
- int tr, res = 0;
- int i, j, k, f, r, top;
- while(true) {
- memset(dep, -1, n * sizeof(int));
- for(f = dep[ps[0] = s] = 0, r = 1; f != r; )
- for(i = ps[f++], j = head[i]; j != -1; j = E[j].next) {
- if(E[j].c && -1 == dep[k=E[j].v]) {
- dep[k] = dep[i] + 1; ps[r++] = k;
- if(k == t) {
- f = r; break;
- }
- }
- }
- if(-1 == dep[t]) break;
- memcpy(cur, head, n * sizeof(int));
- for(i = s, top = 0; ; ) {
- if(i == t) {
- for(k = 0, tr = inf; k < top; ++k)
- if(E[ps[k]].c < tr) tr = E[ps[f=k]].c;
- for(k = 0; k < top; ++k)
- E[ps[k]].c -= tr, E[ps[k]^1].c += tr;
- res += tr; i = E[ps[top = f]].u;
- }
- for(j = cur[i]; cur[i] != -1; j = cur[i] = E[cur[i]].next)
- if(E[j].c && dep[i] + 1 == dep[E[j].v]) break;
- if(cur[i] != -1) {
- ps[top++] = cur[i];
- i = E[cur[i]].v;
- } else {
- if(0 == top) break;
- dep[i] = -1; i = E[ps[--top]].u;
- }
- }
- }
- return res;
- }
- void solve(int cas) {
- printf("Case %d: %s\n\n", cas, tar == Dinic(nv, source, sink) ?
- "Yes" : "No");
- }
- int main() {
- // freopen("stdin.txt", "r", stdin);
- int t, cas;
- scanf("%d", &t);
- for(cas = 1; cas <= t; ++cas) {
- getMap();
- solve(cas);
- }
- return 0;
- }
HDU3572 Task Schedule 【最大流】的更多相关文章
- HDU3572 Task Schedule(最大流+构图思维)
题意: 有N个任务M个机器,给每个任务i完成所花费的时间Pi且每个任务要在第Si天后开始,在第Ei天前结束,保证任务在(S,E)之间一定能完成. 每个机器在一天里只能运行一个任务,一个任务可以在中途更 ...
- HDU 3572 Task Schedule (最大流)
C - Task Schedule Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU3572:Task Schedule【最大流】
上了一天课 心塞塞的 果然像刘老师那么说 如果你有挂科+4级没过 那基本上是WF队 题目大意:有时间补吧 思路:给每个任务向每个时间点连边容量为1 每个时间点向汇点连边 容量为机器的个数 源点向每个任 ...
- hdu-3572 Task Schedule---最大流判断满流+dinic算法
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3572 题目大意: 给N个任务,M台机器.每个任务有最早才能开始做的时间S,deadline E,和持 ...
- HDU 3572 Task Schedule(拆点+最大流dinic)
Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 3572 Task Schedule(最大流&&建图经典&&dinic)
Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 3572 Task Schedule
Task Schedule 题意:有N个任务,M台机器.每一个任务给S,P,E分别表示该任务的(最早开始)开始时间,持续时间和(最晚)结束时间:问每一个任务是否能在预定的时间区间内完成: 注:每一个任 ...
- hdu 3572 Task Schedule (dinic算法)
pid=3572">Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU3572Task Schedule(最大流 ISAP比較快)建图方法不错
Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
随机推荐
- Devexpress DateEdit选年月 z
Mask与Display只显示年月2012-02这种格式,但用户选择起来还是不爽,体验太差. 效果如下: 代码: using Microsoft.VisualBasic; using System; ...
- 转载:Hadoop权威指南学习笔记
转自:http://pieux.github.io/blog/2013-05-08-learn-hadoop-the-definitive-guide.html 1 前言 Hadoop的内部工作机制: ...
- GIT 分支的理解
乎所有的版本控制系统都以某种形式支持分支. 使用分支意味着你可以把你的工作从开发主线上分离开来,以免影响开发主线. 在很多版本控制系统中,这是一个略微低效的过程——常常需要完全创建一个源代码目录的副本 ...
- Web自动化框架搭建——前言
1.web测试功能特性 a.功能逻辑测试(功能测试),这一块所有系统都是一致的,比如数据的添加.删除.修改:功能测试案例设计感兴趣和有时间的话可以另外专题探讨: b.浏览器兼容性测试,更重要的是体验这 ...
- python 入门实践之网页数据抓取
这个不错.正好入门学习使用. 1.其中用到 feedparser: 技巧:使用 Universal Feed Parser 驾驭 RSS http://www.ibm.com/developerwor ...
- uva202:循环小数(循环节+抽屉原理)
题意: 给出两个数n,m,0<=n,m<=3000,输出n/m的循环小数表示以及循环节长度. 思路: 设立一个r[]数组记录循环小数,u[]记录每次的count,用于标记,小数计算可用 r ...
- HDU-4725 The Shortest Path in Nya Graph 最短路
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4725 如果直接建图复杂度过大,但是考虑到每层之间的有效边很少,只要在每层增加两个虚拟节点n+i和2*n ...
- Web开发人员需知的Web缓存知识
最近的译文距今已有4年之久,原文有一定的更新.今天踩着前辈们的肩膀,再次把这篇文章翻译整理下.一来让自己对web缓存的理解更深刻些,二来让大家注意力稍稍转移下,不要整天HTML5, 面试题啊叨啊叨的~ ...
- 【转】iOS开发--一步步教你彻底学会『iOS应用间相互跳转』
1. 应用间相互跳转简介 在iOS开发的过程中,我们经常会遇到需要从一个应用程序A跳转到另一个应用程序B的场景.这就需要我们掌握iOS应用程序之间的相互跳转知识. 下面来看看我们在开发过程中遇到的应用 ...
- 分享iOS最喜欢的技巧和提示
转自:http://blog.csdn.net/biggercoffee/article/details/50394027 Objective-C 1.让Xcode的控制台支持LLDB类型的打印 这有 ...