CSU-2034 Column Addition
CSU-2034 Column Addition
Description
A multi-digit column addition is a formula on adding two integers written like this:
aaarticlea/webp;base64,UklGRg4FAABXRUJQVlA4TAIFAAAvm4EcAB6q2rYtkpxP7snUOdQR1BGULt22bbmSpUq2GtWqVJih1NAy74aT5d0SJQa+gaZw/WHmxE/cF5TLGGZmsMz4hBMHRdv/ts0P9jL/O+gE/xMYC4eamhkKCQoZGQV17yGU1b333m2GQMZPirVtbaY9cjbDHlgBK4hGx8bGIVFIVFRU1PReUK/BTP97L5ivvGLK039HbiQpUnoYbjOLqXmAkjf37Wb+3cy/Tek2dHbYNYDiKXtqROChO8XfwgRbtjr4xnoGgfQr5v/gCCpWsRDA5jPcjwJf7lO5Slc7y/PPSrYujcBMnPCpqIbAlS3iCiZYRTGfZB8C+w7KJ2nAR9RvDWsITBlJ66SzwjVcQUkRg/lk+85WBEW5Cjx8JP3mRUmOmxdNJF41ArctEldQUTpSsW16alCyiEGE+QPY1v+T74/Wzm9xjADEq9bW1goVnxqu9y1suPrjIDnlaRRgODQASKOze5wjw/1kK6oVZVLl6rjWPLz6HVakbIkpDpHFbgVw3ngR6bZtEeX3oAjle1kQhM9YnLKlRpR0BdtYdreyCmwalwUPfepDUoYotw1ZJsa3CxGOobXf2XH5Z9zA94Ez5omxNx4ibTkzM8u0UrxnEcQ2NZ2zzF7omDiKOxZfynCrbrtTrvdxs/+UL2VfcRhDl12MAk+FwSY2HdfcHWomycyKsIKn0lX/hm9MUxftk5otP8kXrb4wsE08FiBTgad8DzP7HJQtCPh64o4rxtEWu5WSNVsc7Zl5Y1BPBRXmo2yhGy5qfV9xebvt6UVJyO96gf2UFWn6/qL5F2q2pOWKojGo9p1PdQkDvgLln6bPt1Vj1TFB+d0r0cAykVbn3X2f6JPabfBs44VIr+/qB8zlqVd9sVHmP2s1ipWU3aF4T12cewGOK56o29J9N1wqg1HqN4u9KlfvzkXZAu/Oa6qSa8ezHZd/flIyWLlFhr+zPUR9ll+GUH1k/QsveIpAuhdeeCHMxuqE9HXc05Bo4cAvmand14ePVPVld1N2dUwq1ldSU6jPzuvXIpaff17cksChZY+H9+Xnn4tYJ75JPxO8/SyWlIWUhfGzEEPq0nlbml+OgYzVJXlqNmVfdmda4cndqUrtXinKFQP5b/iynLl18W8Rlwcakv/ddvmStozAVi3y1Kseon5/lwJNHNMxcYXTeOrdf+AuDxOsSJMAbftE+9ILXNUii/uTDfvmDFmb5oVnPxP4skVlCwMiCVkYLNFjTVRS2aIKT8VFb0ONqmTdFkdzZt64vNa+1yLKpjtVEmDtU321hvfizvv+PPFNbrLMyStHi+Z2rgriYuQmxyhfqkTcQ4+u4iYef5Y0YuZS6uKXiYvnba3IT4KI8Y0JJZQnxA306Cou7ifrsLbS9om3tbUeaDRxSN+JE+jRVTx29MDE+OVAYx6ZqRWrKBJTYBsvPivKhhPo7iqy4r1Ud4TiO3yr3+yojzy5+x6cQHdXEeAPUbNtlZSU3ZnKfL7CCXR3FQHSfdvEBez3SjSwC0U/2P+4g/++ee42mOCTWPwArE2zZdlxsT/vtodxAx1dxY4Mf8fvy0iAit+H5lNSTuedlAdcYaWrq6jfhKzlOp5GXbzPua+wOCU7r1acQI+uImT7bi5zX7MEnV5y/7EIiys8t627qwiPff8OkN95a5VRFCFyrf7Ke0V1FTelpxX73wF4sGjJ2v0/3ISPm/13s/8A" alt="img">
A multi-digit column addition is written on the blackboard, but the sum is not necessarily correct. We can erase any number of the columns so that the addition becomes correct. For example, in the following addition, we can obtain a correct addition by erasing the second and the forth columns.

Your task is to find the minimum number of columns needed to be erased such that the remaining formula becomes a correct addition.
Input
There are multiple test cases in the input. Each test case starts with a line containing the single integer n, the number of digit columns in the addition (1 ⩽ n ⩽ 1000). Each of the next 3 lines contain a string of n digits. The number on the third line is presenting the (not necessarily correct) sum of the numbers in the first and the second line. The input terminates with a line containing “0” which should not be processed.
Output
For each test case, print a single line containing the minimum number of columns needed to be erased.
Sample Input
3
123
456
579
5
12127
45618
51825
2
24
32
32
5
12299
12299
25598
0
Sample Output
0
2
2
1
题意
给定一个n,给出三个n位数,你可以同时去掉这三个数中的同一位数,使第一个数加第二个数等于第三个数,问最小需要去掉几位。
题解
这是一个DP题,贪心的去是不对的,随便举个例子即可证明贪心错误。
设\(dp[i]\)为到第i位最多可以保留多少位,用一个变量ans1存储最大能保留多少位。设a[i]为第一串数字的第i个数,b[i]为第二串数字的第i个数,ans[i]为第三串数字的第i个数,从n到1处理加法。
若(a[i]+b[i])%10==ans[i],说明这一位可以保留,将f[i]设为1,如果有进位,将i处进位(k[i])设为1,如果没有进位,k[i] = 0, 更新答案最大值,只在不进位时更新最大值是有原因的,因为如果进位的话,你无法确定这一位是否该留,比如99 99 98,均满足相等,但都有进位,一个也不能留
然后从n到i枚举j,如果(a[i]+b[i]+k[j])%10==1,那么f[i]=max(f[i], f[j] + 1),同样有进位的话更新k[i],无进位时更新一下最大能保留多少位,最后取输出n-ans1即可
#include<bits/stdc++.h>
using namespace std;
int a[1050], b[1050], ans[1050], f[1050];
int k[1050];
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n == 0) break;
for (int i = 1; i <= n; i++) {
scanf("%1d", &a[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%1d", &b[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%1d", &ans[i]);
}
int ans1 = 0;
memset(f, 0, sizeof(f));
memset(k, 0, sizeof(k));
for (int i = n; i >= 1; i--) {
if ((a[i] + b[i]) % 10 == ans[i]) {
f[i] = 1;
if (a[i] + b[i] - 10 == ans[i]) k[i] = 1;
else {
k[i] = 0;
ans1 = max(ans1, f[i]);
}
}
for (int j = n; j > i; j--) {
if ((a[i] + b[i] + k[j]) % 10 == ans[i]) {
f[i] = max(f[i], f[j] + 1);
if (a[i] + b[i] + k[j] - 10 == ans[i]) k[i] = 1;
else {
k[i] = 0;
ans1 = max(ans1, f[i]);
}
}
}
}
printf("%d\n", n - ans1);
}
return 0;
}
/**********************************************************************
Problem: 2034
User: Artoriax
Language: C++
Result: AC
Time:148 ms
Memory:2044 kb
**********************************************************************/
CSU-2034 Column Addition的更多相关文章
- Column Addition~DP(脑子抽了,当时没有想到)
Description A multi-digit column addition is a formula on adding two integers written like this:
- 【动态规划】Column Addition @ICPC2017Tehran/upcexam5434
时间限制: 1 Sec 内存限制: 128 MB 题目描述 A multi-digit column addition is a formula on adding two integers writ ...
- 2018湖南多校第二场-20180407 Column Addition
Description A multi-digit column addition is a formula on adding two integers written like this:
- TokuDB存储引擎
TokuDB是Tokutek公司开发的基于ft-index(Fractal Tree Index)键值对的存储引擎. 它使用索引加快查询速度,具有高扩展性,并支持hot scheme modifica ...
- Servlet3.0学习总结(二)——使用注解标注过滤器(Filter)
Servlet3.0提供@WebFilter注解将一个实现了javax.servlet.Filter接口的类定义为过滤器,这样我们在web应用中使用过滤器时,也不再需要在web.xml文件中配置过滤器 ...
- MariaDB glare cluster简介
MariaDB MariaDB 是由原来 MySQL 的作者Michael Widenius创办的公司所开发的免费开源的数据库服务器,MariaDB是同一MySQL版本的二进制替代品, 当前最新版本1 ...
- MySQL 高性能存储引擎:TokuDB初探
在安装MariaDB的时候了解到代替InnoDB的TokuDB,看简介非常的棒,这里对ToduDB做一个初步的整理,使用后再做更多的分享. 什么是TokuDB? 在MySQL最流行的支持全事务的引擎为 ...
- System.Windows.Forms
File: winforms\Managed\System\WinForms\DataGridView.cs Project: ndp\fx\src\System.Windows.Forms.cspr ...
- 浅谈MariaDB Galera Cluster架构
MariaDB MariaDB 是由原来 MySQL 的作者Michael Widenius创办的公司所开发的免费开源的数据库服务器,MariaDB是同一MySQL版本的二进制替代品 ...
随机推荐
- 服网LNMP集群 w/ MySQL PaaS-1.0
平台: arm 类型: ARM 模板 软件包: haproxy linux mysql nginx application server arm basic software fuwang infra ...
- safenet 超级狗 加密狗
1.CS程序可以工作正常: 2.BS程序,服务器验证狗,IIS设置32位兼容方法1: dog.SetLibPath,设置查找依赖dll路径: 方法2:默认系统目录 C:\Windows\SysWOW6 ...
- springMvc-对servletApi的支持以及把后台对象以json方式传到前台
1.对servletApi的支持:request.response以及session.cookie的支持 2.把后台代码以json格式向前台输出: 代码: package com.java.contr ...
- 用rem实现h5页面的编写
一 静态页面的布局 将这段代码加到script中 (function(doc, win) { var docEl = doc.documentElement, resizeEvt = 'orienta ...
- centos下的安装mysql,jdk
mysql: 如果你是用rpm安装, 检查一下RPM PACKAGE:rpm -qa | grep -i mysql如果mysql已经安装在本机,则会列出mysql安装过的文件 ,像mysql-ser ...
- kubernetes-配置管理(十一)
Secret https://kubernetes.io/docs/concepts/configuration/secret/ Secret解决了密码.token.密钥等敏感数据的配置问题,而不需要 ...
- 如何让图片相对于上层DIV始终保持水平、垂直都居中
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- java菜鸟的Python学习之路(1)
学习一门新的语言,应当抓住语言的共有特性,这样容易触类旁通,学习起来也十分的快捷愉悦 而语言的特性大约有以下元素 变量定义与类型 算术符号与逻辑符号 for 循环与 while 循环 数组,线性表等一 ...
- 如何使用工具进行C/C++的内存泄漏检测
系统编程中一个重要的方面就是有效地处理与内存相关的问题.你的工作越接近系统,你就需要面对越多的内存问题.有时这些问题非常琐碎,而更多时候它会演变成一个调试内存问题的恶梦.所以,在实践中会用到很多工具来 ...
- win10搭建FTP服务器
下面就给大家讲解Win10搭建FTP服务器的详细操作方法. 1.首先,我们在Cortana中搜索控制面板并进入: 2.在控制面板-程序中,点击启用或关闭Windows功能: 3.在FTP服务器.Web ...