Adaboost和GBDT的区别以及xgboost和GBDT的区别
Adaboost和GBDT的区别以及xgboost和GBDT的区别
以下内容转自 https://blog.csdn.net/chengfulukou/article/details/76906710 ,本文主要用作记录收藏
AdaBoost VS GBDT
和AdaBoost一样,Gradient Boosting每次基于先前模型的表现选择一个表现一般的新模型并且进行调整。不同的是,AdaBoost是通过提升错分数据点的权重来定位模型的不足,而Gradient Boosting是通过算梯度(gradient)来定位模型的不足。因此相比AdaBoost, Gradient Boosting可以使用更多种类的目标函数,而当目标函数是均方误差时,计算损失函数的负梯度值在当前模型的值即为残差。
GBDT VS LR
从决策边界来说,线性回归的决策边界是一条直线,逻辑回归的决策边界是一条曲线,而GBDT的决策边界可能是很多条线。GBDT并不一定总是好于线性回归或逻辑回归。根据没有免费的午餐原则,没有一个算法是在所有问题上都能好于另一个算法的。根据奥卡姆剃刀原则,如果GBDT和线性回归或逻辑回归在某个问题上表现接近,那么我们应该选择相对比较简单的线性回归或逻辑回归。具体选择哪一个算法还是要根据实际问题来决定。
机器学习算法中GBDT和XGBOOST的区别有哪些?
- 基分类器的选择:传统GBDT以CART作为基分类器,XGBoost还支持线性分类器,这个时候XGBoost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。
- 二阶泰勒展开:传统GBDT在优化时只用到一阶导数信息,XGBoost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,XGBoost工具支持自定义损失函数,只要函数可一阶和二阶求导。
- 方差-方差权衡:XGBoost在目标函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出分数的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是XGBoost优于传统GBDT的一个特性。
- Shrinkage(缩减):相当于学习速率(xgboost中的)。XGBoost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(补充:传统GBDT的实现也有学习速率)
- 列抽样(column subsampling):XGBoost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是XGBoost异于传统GBDT的一个特性。
- 缺失值处理:XGBoost考虑了训练数据为稀疏值的情况,可以为缺失值或者指定的值指定分支的默认方向,这能大大提升算法的效率,paper提到50倍。即对于特征的值有缺失的样本,XGBoost可以自动学习出它的分裂方向。
- XGBoost工具支持并行:Boosting不是一种串行的结构吗?怎么并行的?注意XGBoost的并行不是tree粒度的并行,XGBoost也是一次迭代完才能进行下一次迭代的(第次迭代的损失函数里包含了前面次迭代的预测值)。XGBoost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),XGBoost在训练之前,预先对数据进行了排序,然后保存为block(块)结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。
- 线程缓冲区存储:按照特征列方式存储能优化寻找最佳的分割点,但是当以行计算梯度数据时会导致内存的不连续访问,严重时会导致cache miss,降低算法效率。paper中提到,可先将数据收集到线程内部的buffer(缓冲区),主要是结合多线程、数据压缩、分片的方法,然后再计算,提高算法的效率。
- 可并行的近似直方图算法:树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。大致的思想是根据百分位法列举几个可能成为分割点的候选者,然后从候选者中根据上面求分割点的公式计算找出最佳的分割点。
Adaboost和GBDT的区别以及xgboost和GBDT的区别的更多相关文章
- 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别
目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...
- rf, xgboost和GBDT对比;xgboost和lightGbm
1. RF 随机森林基于Bagging的策略是Bagging的扩展变体,概括RF包括四个部分:1.随机选择样本(放回抽样):2.随机选择特征(相比普通通bagging多了特征采样):3.构建决策树:4 ...
- JavaScript中Element与Node的区别,children与childNodes的区别
关于Element跟Node的区别,cilldren跟childNodes的区别很多朋友弄不清楚,本文试图让大家明白这几个概念之间的区别. Node(节点)是DOM层次结构中的任何类型的对象的通用名称 ...
- MongoDB之一介绍(MongoDB与MySQL的区别、BSON与JSON的区别)
MySQL与MongoDB的操作对比,以及区别 MySQL与MongoDB都是开源的常用数据库,但是MySQL是传统的关系型数据库,MongoDB则是非关系型数据库,也叫文档型数据库,是一种NoSQL ...
- ThinkPHP中实例化对象M()和D()的区别,select和find的区别
原文:ThinkPHP中实例化对象M()和D()的区别,select和find的区别 1.ThinkPHP中实例化对象M()和D()的区别 在实例化的过程中,经常使用D方法和M方法,这两个方法的区别在 ...
- C++中结构体与类的区别(struct与class的区别)
转载来源:http://blog.sina.com.cn/s/blog_48f587a80100k630.html C++中的struct对C中的struct进行了扩充,它已经不再只是一个包含不同数据 ...
- 详细解说Windows 8.1与Windows 8的区别(Win8.1与Win8区别)
详细解说Windows 8.1与Windows 8的区别(Win8.1与Win8区别) 本文转自“吾乐吧软件站”,原文链接:http://www.wuleba.com/?p=23082 最近,吾乐吧软 ...
- Jsonp 关键字详解及json和jsonp的区别,ajax和jsonp的区别
为什么要用jsonp? 相信大家对跨域一定不陌生,对同源策略也同样熟悉.什么,你没听过?没关系,既然是深入浅出,那就从头说起. 假如我写了个index页面,页面里有个请求,请求的是一个json数据(不 ...
- GIT(6)----fork和clone的区别,fetch与pull的区别
参考资料: [1].Git学习笔记:fork和clone的区别,fetch与pull的区别 [2].在Github和Git上fork之简单指南
随机推荐
- Centos6.5安装部署nodejs
使用编译好的包安装 一.在官网下载包 https://nodejs.org/en/download/ 二.把包传送到服务器,进入到包目录并解压 tar axvf node-v6.9.5-linux-x ...
- linux 命令——37 date (转)
在linux环境中,不管是编程还是其他维护,时间是必不可少的,也经常会用到时间的运算,熟练运用date命令来表示自己想要表示的时间,肯定可以给自己的工作带来诸多方便. 1.命令格式: date [参数 ...
- 【BZOJ3930】[CQOI2015] 选数(容斥)
点此看题面 大致题意: 让你求出在区间\([L,H]\)间选择\(n\)个数时,有多少种方案使其\(gcd\)为\(K\). 容斥 原以为是一道可怕的莫比乌斯反演题. 但是,数据范围中有这样一句话:\ ...
- 【BZOJ1088】[SCOI2005] 扫雷Mine(分类讨论)
点此看题面 大致题意: 给你一个\(2*n\)的扫雷棋盘,现让你根据第二列的信息确定第一列有多少种摆法. 扫雷性质 听说这是一道动态规划+数学题. 其实,根据扫雷游戏的某个性质,只要确定了第一个格子是 ...
- Mybatis-动态 SQL语句
if标签 判断语句,用户单条件分支判断 where标签 为了简化上面where 1=1的条件拼装,我们可以采用标签来简化开发 同 foreach标签 场景:传入多个 id 查询用户信息 标签用于遍历集 ...
- Redis学习记录(一)
在学习Redis之前,要知道什么是NoSQL? 1.NoSQL 1.1. 什么是NoSQL NoSQL(NoSQL = Not Only SQL),表示“不仅仅是SQL”,泛指非关系型数据库. 1.2 ...
- 项目17-超详细“零”基础kafka入门篇
分类: Linux服务篇,Linux架构篇 1.认识kafka 1.1 kafka简介 Kafka 是一个分布式流媒体平台 kafka官网:http://kafka.apache.org/ (1) ...
- 解决国内网络Python2.X 3.X PIP安装模块连接超时问题
pip国内的一些镜像 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.ustc.edu.cn/si ...
- 文档对象模型 DOM
1 DOM概述 1.1 什么是DOM 文档对象模型 Document Object Model 文档对象模型 是表示和操作 HTML和XML文档内容的基础API 文档对象模型,是W3C组织推荐的处理可 ...
- 怎样查看web软件例如apache的连接数
查看连接总数和当前的连接数 netstat -ant | grep $ip:80 | wc -l netstat -ant | grep $ip:80 | grep EST | wc -l 查看IP访 ...