我使用OpenCV2.4.4的windows版本+Qt4.8.3+VS2010的编译器做了一个手势识别的小程序。

本程序主要使到了Opencv的特征训练库和最基本的图像处理的知识,包括肤色检测等等。

废话不多,先看一下基本的界面设计,以及主要功能:

相信对于Qt有一些了解的人都不会对这个界面的设计感到陌生吧!(该死,该死!)我们向下走:

紧接着是Qt导入OPenCV2.4.4的库文件:(先看一下Qt的工程文件吧)

  1. #-------------------------------------------------
  2. #
  3. # Project created by QtCreator 2013-05-25T11:16:11
  4. #
  5. #-------------------------------------------------
  6. QT       += core gui
  7. CONFIG += warn_off
  8. greaterThan(QT_MAJOR_VERSION, 4): QT += widgets
  9. TARGET = HandGesture
  10. TEMPLATE = app
  11. INCLUDEPATH += E:/MyQtCreator/MyOpenCV/opencv/build/include
  12. SOURCES += main.cpp\
  13. handgesturedialog.cpp \
  14. SRC/GestrueInfo.cpp \
  15. SRC/AIGesture.cpp
  16. HEADERS  += handgesturedialog.h \
  17. SRC/GestureStruct.h \
  18. SRC/GestrueInfo.h \
  19. SRC/AIGesture.h
  20. FORMS    += handgesturedialog.ui
  21. #Load OpenCV runtime libs
  22. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_core244
  23. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_core244d
  24. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  25. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  26. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_features2d244
  27. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_features2d244d
  28. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  29. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  30. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_haartraining_engine
  31. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_haartraining_engined
  32. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  33. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  34. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_highgui244
  35. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_highgui244d
  36. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  37. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  38. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_objdetect244
  39. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_objdetect244d
  40. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  41. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  42. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_video244
  43. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_video244d
  44. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  45. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  46. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_calib3d244
  47. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_calib3d244d
  48. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  49. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  50. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_contrib244
  51. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_contrib244d
  52. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  53. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  54. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_imgproc244
  55. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_imgproc244d
  56. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  57. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  58. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_legacy244
  59. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_legacy244d
  60. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  61. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  62. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_ml244
  63. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_ml244d
  64. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  65. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  66. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_photo244
  67. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_photo244d
  68. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  69. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  70. win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_nonfree244
  71. else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10/lib/ -lopencv_nonfree244d
  72. INCLUDEPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10
  73. DEPENDPATH += $$PWD/../../../MyQtCreator/MyOpenCV/opencv/build/x86/vc10

当做好以上的基本配置之后,我们进行手势识别的开发:

第一:要采集到原始的图片

采集好原始图片后进行修正,包括尺寸大小,那时我还使用到了matlab这个强大的工具,

紧接着进行图像的样本特征提取,到网上把,CSDN中有大量的关于对图像特征训练库的识别与训练,按照他们一步一步的操作模式不会有问题的饿

下面是要通过摄像头进行图像的采集,直接贴代码:

  1. void HandGestureDialog::on_pushButton_OpenCamera_clicked()
  2. {
  3. cam = cvCreateCameraCapture(0);
  4. timer->start(time_intervals);
  5. frame = cvQueryFrame(cam);
  6. ui->pushButton_OpenCamera->setDisabled (true);
  7. ui->pushButton_CloseCamera->setEnabled (true);
  8. ui->pushButton_ShowPause->setEnabled (true);
  9. ui->pushButton_SnapImage->setEnabled (true);
  10. afterSkin = cvCreateImage (cvSize(frame->width,frame->height),IPL_DEPTH_8U,1);
  11. }
  1. void HandGestureDialog::readFarme()
  2. {
  3. frame = cvQueryFrame(cam);
  4. QImage image((const uchar*)frame->imageData,
  5. frame->width,
  6. frame->height,
  7. QImage::Format_RGB888);
  8. image = image.rgbSwapped();
  9. image = image.scaled(320,240);
  10. ui->label_CameraShow->setPixmap(QPixmap::fromImage(image));
  11. gesture.SkinDetect (frame,afterSkin);
  12. /*next to opencv*/
  13. if(status_switch == Recongnise)
  14. {
  15. // Flips the frame into mirror image
  16. cvFlip(frame,frame,1);
  17. // Call the function to detect and draw the hand positions
  18. StartRecongizeHand(frame);
  19. }
  20. }

查看一下样例图片:

开始训练的核心代码:

  1. void HandGestureDialog::on_pushButton_StartTrain_clicked()
  2. {
  3. QProgressDialog* process = new QProgressDialog(this);
  4. process->setWindowTitle ("Traning Model");
  5. process->setLabelText("Processing...");
  6. process->setModal(true);
  7. process->show ();
  8. gesture.setMainUIPointer (this);
  9. gesture.Train(process);
  10. QMessageBox::about (this,tr("完成"),tr("手势训练模型完成"));
  11. }
  1. void CAIGesture::Train(QProgressDialog *pBar)//对指定训练文件夹里面的所有手势进行训练
  2. {
  3. QString curStr = QDir::currentPath ();
  4. QString fp1 = "InfoDoc/gestureFeatureFile.yml";
  5. fp1 = curStr + "/" + fp1;
  6. CvFileStorage *GestureFeature=cvOpenFileStorage(fp1.toStdString ().c_str (),0,CV_STORAGE_WRITE);
  7. FILE* fp;
  8. QString fp2 = "InfoDoc/gestureFile.txt";
  9. fp2 = curStr + "/" + fp2;
  10. fp=fopen(fp2.toStdString ().c_str (),"w");
  11. int FolderCount=0;
  12. /*获取当前的目录,然后得到当前的子目录*/
  13. QString trainStr = curStr;
  14. trainStr += "/TraningSample/";
  15. QDir trainDir(trainStr);
  16. GestureStruct gesture;
  17. QFileInfoList list = trainDir.entryInfoList();
  18. pBar->setRange(0,list.size ()-2);
  19. for(int i=2;i<list.size ();i++)
  20. {
  21. pBar->setValue(i-1);
  22. QFileInfo fileInfo = list.at (i);
  23. if(fileInfo.isDir () == true)
  24. {
  25. FolderCount++;
  26. QString tempStr = fileInfo.fileName ();
  27. fprintf(fp,"%s\n",tempStr.toStdString ().c_str ());
  28. gesture.angleName = tempStr.toStdString ()+"angleName";
  29. gesture.anglechaName = tempStr.toStdString ()+"anglechaName";
  30. gesture.countName = tempStr.toStdString ()+"anglecountName";
  31. tempStr = trainStr + tempStr + "/";
  32. QDir subDir(tempStr);
  33. OneGestureTrain(subDir,GestureFeature,gesture);
  34. }
  35. }
  36. pBar->autoClose ();
  37. delete pBar;
  38. pBar = NULL;
  39. fprintf(fp,"%s%d","Hand Gesture Number: ",FolderCount);
  40. fclose(fp);
  41. cvReleaseFileStorage(&GestureFeature);
  42. }
  1. void CAIGesture::OneGestureTrain(QDir GestureDir,CvFileStorage *fs,GestureStruct gesture)//对单张图片进行训练
  2. {
  3. IplImage* TrainImage=0;
  4. IplImage* dst=0;
  5. CvSeq* contour=NULL;
  6. CvMemStorage* storage;
  7. storage = cvCreateMemStorage(0);
  8. CvPoint center=cvPoint(0,0);
  9. float radius=0.0;
  10. float angle[FeatureNum][10]={0},anglecha[FeatureNum][10]={0},anglesum[FeatureNum][10]={0},anglechasum[FeatureNum][10]={0};
  11. float count[FeatureNum]={0},countsum[FeatureNum]={0};
  12. int FileCount=0;
  13. /*读取该目录下的所有jpg文件*/
  14. QFileInfoList list = GestureDir.entryInfoList();
  15. QString currentDirPath = GestureDir.absolutePath ();
  16. currentDirPath += "/";
  17. for(int k=2;k<list.size ();k++)
  18. {
  19. QFileInfo tempInfo = list.at (k);
  20. if(tempInfo.isFile () == true)
  21. {
  22. QString fileNamePath = currentDirPath + tempInfo.fileName ();
  23. TrainImage=cvLoadImage(fileNamePath.toStdString ().c_str(),1);
  24. if(TrainImage==NULL)
  25. {
  26. cout << "can't load image" << endl;
  27. cvReleaseMemStorage(&storage);
  28. cvReleaseImage(&dst);
  29. cvReleaseImage(&TrainImage);
  30. return;
  31. }
  32. if(dst==NULL&&TrainImage!=NULL)
  33. dst=cvCreateImage(cvGetSize(TrainImage),8,1);
  34. SkinDetect(TrainImage,dst);
  35. FindBigContour(dst,contour,storage);
  36. cvZero(dst);
  37. cvDrawContours( dst, contour, CV_RGB(255,255,255),CV_RGB(255,255,255), -1, -1, 8 );
  38. ComputeCenter(contour,center,radius);
  39. GetFeature(dst,center,radius,angle,anglecha,count);
  40. for(int j=0;j<FeatureNum;j++)
  41. {
  42. countsum[j]+=count[j];
  43. for(int k=0;k<10;k++)
  44. {
  45. anglesum[j][k]+=angle[j][k];
  46. anglechasum[j][k]+=anglecha[j][k];
  47. }
  48. }
  49. FileCount++;
  50. cvReleaseImage(&TrainImage);
  51. }
  52. }
  53. for(int i=0;i<FeatureNum;i++)
  54. {
  55. gesture.count[i]=countsum[i]/FileCount;
  56. for(int j=0;j<10;j++)
  57. {
  58. gesture.angle[i][j]=anglesum[i][j]/FileCount;
  59. gesture.anglecha[i][j]=anglechasum[i][j]/FileCount;
  60. }
  61. }
  62. cvStartWriteStruct(fs,gesture.angleName.c_str (),CV_NODE_SEQ,NULL);//开始写入yml文件
  63. int i=0;
  64. for(i=0;i<FeatureNum;i++)
  65. cvWriteRawData(fs,&gesture.angle[i][0],10,"f");//写入肤色角度的值
  66. cvEndWriteStruct(fs);
  67. cvStartWriteStruct(fs,gesture.anglechaName.c_str (),CV_NODE_SEQ,NULL);
  68. for(i=0;i<FeatureNum;i++)
  69. cvWriteRawData(fs,&gesture.anglecha[i][0],10,"f");//写入非肤色角度的值
  70. cvEndWriteStruct(fs);
  71. cvStartWriteStruct(fs,gesture.countName.c_str (),CV_NODE_SEQ,NULL);
  72. cvWriteRawData(fs,&gesture.count[0],FeatureNum,"f");//写入肤色角度的个数
  73. cvEndWriteStruct(fs);
  74. cvReleaseMemStorage(&storage);
  75. cvReleaseImage(&dst);
  76. }
  1. void CAIGesture::SkinDetect(IplImage* src,IplImage* dst)
  2. {
  3. IplImage* hsv = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 3);//use to split to HSV
  4. IplImage* tmpH1 = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1);//Use To Skin Detect
  5. IplImage* tmpS1 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
  6. IplImage* tmpH2 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
  7. IplImage* tmpS3 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
  8. IplImage* tmpH3 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
  9. IplImage* tmpS2 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
  10. IplImage* H = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1);
  11. IplImage* S = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1);
  12. IplImage* V = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1);
  13. IplImage* src_tmp1=cvCreateImage(cvGetSize(src),8,3);
  14. cvSmooth(src,src_tmp1,CV_GAUSSIAN,3,3); //Gaussian Blur
  15. cvCvtColor(src_tmp1, hsv, CV_BGR2HSV );//Color Space to Convert
  16. cvCvtPixToPlane(hsv,H,S,V,0);//To Split 3 channel
  17. /*********************Skin Detect**************/
  18. cvInRangeS(H,cvScalar(0.0,0.0,0,0),cvScalar(20.0,0.0,0,0),tmpH1);
  19. cvInRangeS(S,cvScalar(75.0,0.0,0,0),cvScalar(200.0,0.0,0,0),tmpS1);
  20. cvAnd(tmpH1,tmpS1,tmpH1,0);
  21. // Red Hue with Low Saturation
  22. // Hue 0 to 26 degree and Sat 20 to 90
  23. cvInRangeS(H,cvScalar(0.0,0.0,0,0),cvScalar(13.0,0.0,0,0),tmpH2);
  24. cvInRangeS(S,cvScalar(20.0,0.0,0,0),cvScalar(90.0,0.0,0,0),tmpS2);
  25. cvAnd(tmpH2,tmpS2,tmpH2,0);
  26. // Red Hue to Pink with Low Saturation
  27. // Hue 340 to 360 degree and Sat 15 to 90
  28. cvInRangeS(H,cvScalar(170.0,0.0,0,0),cvScalar(180.0,0.0,0,0),tmpH3);
  29. cvInRangeS(S,cvScalar(15.0,0.0,0,0),cvScalar(90.,0.0,0,0),tmpS3);
  30. cvAnd(tmpH3,tmpS3,tmpH3,0);
  31. // Combine the Hue and Sat detections
  32. cvOr(tmpH3,tmpH2,tmpH2,0);
  33. cvOr(tmpH1,tmpH2,tmpH1,0);
  34. cvCopy(tmpH1,dst);
  35. cvReleaseImage(&hsv);
  36. cvReleaseImage(&tmpH1);
  37. cvReleaseImage(&tmpS1);
  38. cvReleaseImage(&tmpH2);
  39. cvReleaseImage(&tmpS2);
  40. cvReleaseImage(&tmpH3);
  41. cvReleaseImage(&tmpS3);
  42. cvReleaseImage(&H);
  43. cvReleaseImage(&S);
  44. cvReleaseImage(&V);
  45. cvReleaseImage(&src_tmp1);
  46. }
  1. //To Find The biggest Countour
  2. void CAIGesture::FindBigContour(IplImage* src,CvSeq* (&contour),CvMemStorage* storage)
  3. {
  4. CvSeq* contour_tmp,*contourPos;
  5. int contourcount=cvFindContours(src, storage, &contour_tmp, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_NONE );
  6. if(contourcount==0)
  7. return;
  8. CvRect bndRect = cvRect(0,0,0,0);
  9. double contourArea,maxcontArea=0;
  10. for( ; contour_tmp != 0; contour_tmp = contour_tmp->h_next )
  11. {
  12. bndRect = cvBoundingRect( contour_tmp, 0 );
  13. contourArea=bndRect.width*bndRect.height;
  14. if(contourArea>=maxcontArea)//find Biggest Countour
  15. {
  16. maxcontArea=contourArea;
  17. contourPos=contour_tmp;
  18. }
  19. }
  20. contour=contourPos;
  21. }
  1. //Calculate The Center
  2. void CAIGesture::ComputeCenter(CvSeq* (&contour),CvPoint& center,float& radius)
  3. {
  4. CvMoments m;
  5. double M00,X,Y;
  6. cvMoments(contour,&m,0);
  7. M00=cvGetSpatialMoment(&m,0,0);
  8. X=cvGetSpatialMoment(&m,1,0)/M00;
  9. Y=cvGetSpatialMoment(&m,0,1)/M00;
  10. center.x=(int)X;
  11. center.y=(int)Y;
  12. /*******************tO find radius**********************/
  13. int hullcount;
  14. CvSeq* hull;
  15. CvPoint pt;
  16. double tmpr1,r=0;
  17. hull=cvConvexHull2(contour,0,CV_COUNTER_CLOCKWISE,0);
  18. hullcount=hull->total;
  19. for(int i=1;i<hullcount;i++)
  20. {
  21. pt=**CV_GET_SEQ_ELEM(CvPoint*,hull,i);//get each point
  22. tmpr1=sqrt((double)((center.x-pt.x)*(center.x-pt.x))+(double)((center.y-pt.y)*(center.y-pt.y)));//计算与中心点的大小
  23. if(tmpr1>r)//as the max radius
  24. r=tmpr1;
  25. }
  26. radius=r;
  27. }
  1. void CAIGesture::GetFeature(IplImage* src,CvPoint& center,float radius,
  2. float angle[FeatureNum][10],
  3. float anglecha[FeatureNum][10],
  4. float count[FeatureNum])
  5. {
  6. int width=src->width;
  7. int height=src->height;
  8. int step=src->widthStep/sizeof(uchar);
  9. uchar* data=(uchar*)src->imageData;
  10. float R=0.0;
  11. int a1,b1,x1,y1,a2,b2,x2,y2;//the distance of the center to other point
  12. float angle1_tmp[200]={0},angle2_tmp[200]={0},angle1[50]={0},angle2[50]={0};//temp instance to calculate angule
  13. int angle1_tmp_count=0,angle2_tmp_count=0,angle1count=0,angle2count=0,anglecount=0;
  14. for(int i=0;i<FeatureNum;i++)//分FeatureNum层进行特征提取(也就是5层)分析
  15. {
  16. R=(i+4)*radius/9;
  17. for(int j=0;j<=3600;j++)
  18. {
  19. if(j<=900)
  20. {
  21. a1=(int)(R*sin(j*3.14/1800));//这个要自己实际画一张图就明白了
  22. b1=(int)(R*cos(j*3.14/1800));
  23. x1=center.x-b1;
  24. y1=center.y-a1;
  25. a2=(int)(R*sin((j+1)*3.14/1800));
  26. b2=(int)(R*cos((j+1)*3.14/1800));
  27. x2=center.x-b2;
  28. y2=center.y-a2;
  29. }
  30. else
  31. {
  32. if(j>900&&j<=1800)
  33. {
  34. a1=(int)(R*sin((j-900)*3.14/1800));
  35. b1=(int)(R*cos((j-900)*3.14/1800));
  36. x1=center.x+a1;
  37. y1=center.y-b1;
  38. a2=(int)(R*sin((j+1-900)*3.14/1800));
  39. b2=(int)(R*cos((j+1-900)*3.14/1800));
  40. x2=center.x+a2;
  41. y2=center.y-b2;
  42. }
  43. else
  44. {
  45. if(j>1800&&j<2700)
  46. {
  47. a1=(int)(R*sin((j-1800)*3.14/1800));
  48. b1=(int)(R*cos((j-1800)*3.14/1800));
  49. x1=center.x+b1;
  50. y1=center.y+a1;
  51. a2=(int)(R*sin((j+1-1800)*3.14/1800));
  52. b2=(int)(R*cos((j+1-1800)*3.14/1800));
  53. x2=center.x+b2;
  54. y2=center.y+a2;
  55. }
  56. else
  57. {
  58. a1=(int)(R*sin((j-2700)*3.14/1800));
  59. b1=(int)(R*cos((j-2700)*3.14/1800));
  60. x1=center.x-a1;
  61. y1=center.y+b1;
  62. a2=(int)(R*sin((j+1-2700)*3.14/1800));
  63. b2=(int)(R*cos((j+1-2700)*3.14/1800));
  64. x2=center.x-a2;
  65. y2=center.y+b2;
  66. }
  67. }
  68. }
  69. if(x1>0&&x1<width&&x2>0&&x2<width&&y1>0&&y1<height&&y2>0&&y2<height)
  70. {
  71. if((int)data[y1*step+x1]==255&&(int)data[y2*step+x2]==0)
  72. {
  73. angle1_tmp[angle1_tmp_count]=(float)(j*0.1);//从肤色到非肤色的角度
  74. angle1_tmp_count++;
  75. }
  76. else if((int)data[y1*step+x1]==0&&(int)data[y2*step+x2]==255)
  77. {
  78. angle2_tmp[angle2_tmp_count]=(float)(j*0.1);//从非肤色到肤色的角度
  79. angle2_tmp_count++;
  80. }
  81. }
  82. }
  83. int j=0;
  84. for(j=0;j<angle1_tmp_count;j++)
  85. {
  86. if(angle1_tmp[j]-angle1_tmp[j-1]<0.2)//忽略太小的角度
  87. continue;
  88. angle1[angle1count]=angle1_tmp[j];
  89. angle1count++;
  90. }
  91. for(j=0;j<angle2_tmp_count;j++)
  92. {
  93. if(angle2_tmp[j]-angle2_tmp[j-1]<0.2)
  94. continue;
  95. angle2[angle2count]=angle2_tmp[j];
  96. angle2count++;
  97. }
  98. for(j=0;j<max(angle1count,angle2count);j++)
  99. {
  100. if(angle1[0]>angle2[0])
  101. {
  102. if(angle1[j]-angle2[j]<7)//忽略小于7度的角度,因为人的手指一般都大于这个值
  103. continue;
  104. angle[i][anglecount]=(float)((angle1[j]-angle2[j])*0.01);//肤色的角度
  105. anglecha[i][anglecount]=(float)((angle2[j+1]-angle1[j])*0.01);//非肤色的角度,例如手指间的角度
  106. anglecount++;
  107. }
  108. else
  109. {
  110. if(angle1[j+1]-angle2[j]<7)
  111. continue;
  112. anglecount++;
  113. angle[i][anglecount]=(float)((angle1[j+1]-angle2[j])*0.01);
  114. anglecha[i][anglecount]=(float)((angle2[j]-angle1[j])*0.01);
  115. }
  116. }
  117. if(angle1[0]<angle2[0])
  118. angle[i][0]=(float)((angle1[0]+360-angle2[angle2count-1])*0.01);
  119. else
  120. anglecha[i][0]=(float)((angle2[0]+360-angle1[angle1count-1])*0.01);
  121. count[i]=(float)anglecount;
  122. angle1_tmp_count=0,angle2_tmp_count=0,angle1count=0,angle2count=0,anglecount=0;
  123. for(j=0;j<200;j++)
  124. {
  125. angle1_tmp[j]=0;
  126. angle2_tmp[j]=0;
  127. }
  128. for(j=0;j<50;j++)
  129. {
  130. angle1[j]=0;
  131. angle2[j]=0;
  132. }
  133. }
  134. }

基本上对于自己使用代码创建的训练库的特征提取函数和基本的肤色检测和连通域的检测的函数的核心代码都已经贴到上面去了。

然后再看一下对于特定的手势识别的文件:

  1. void HandGestureDialog::on_pushButton_StartRecongnise_clicked()
  2. {
  3. if(cam==NULL)
  4. {
  5. QMessageBox::warning (this,tr("Warning"),tr("Please Check Camera !"));
  6. return;
  7. }
  8. status_switch = Nothing;
  9. status_switch = Recongnise;
  10. }
  1. void HandGestureDialog::StartRecongizeHand (IplImage *img)
  2. {
  3. // Create a string that contains the exact cascade name
  4. // Contains the trained classifer for detecting hand
  5. const char *cascade_name="hand.xml";
  6. // Create memory for calculations
  7. static CvMemStorage* storage = 0;
  8. // Create a new Haar classifier
  9. static CvHaarClassifierCascade* cascade = 0;
  10. // Sets the scale with which the rectangle is drawn with
  11. int scale = 1;
  12. // Create two points to represent the hand locations
  13. CvPoint pt1, pt2;
  14. // Looping variable
  15. int i;
  16. // Load the HaarClassifierCascade
  17. cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );
  18. // Check whether the cascade has loaded successfully. Else report and error and quit
  19. if( !cascade )
  20. {
  21. fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
  22. return;
  23. }
  24. // Allocate the memory storage
  25. storage = cvCreateMemStorage(0);
  26. // Create a new named window with title: result
  27. cvNamedWindow( "result", 1 );
  28. // Clear the memory storage which was used before
  29. cvClearMemStorage( storage );
  30. // Find whether the cascade is loaded, to find the hands. If yes, then:
  31. if( cascade )
  32. {
  33. // There can be more than one hand in an image. So create a growable sequence of hands.
  34. // Detect the objects and store them in the sequence
  35. CvSeq* hands = cvHaarDetectObjects( img, cascade, storage,
  36. 1.1, 2, CV_HAAR_DO_CANNY_PRUNING,
  37. cvSize(40, 40) );
  38. // Loop the number of hands found.
  39. for( i = 0; i < (hands ? hands->total : 0); i++ )
  40. {
  41. // Create a new rectangle for drawing the hand
  42. CvRect* r = (CvRect*)cvGetSeqElem( hands, i );
  43. // Find the dimensions of the hand,and scale it if necessary
  44. pt1.x = r->x*scale;
  45. pt2.x = (r->x+r->width)*scale;
  46. pt1.y = r->y*scale;
  47. pt2.y = (r->y+r->height)*scale;
  48. // Draw the rectangle in the input image
  49. cvRectangle( img, pt1, pt2, CV_RGB(230,20,232), 3, 8, 0 );
  50. }
  51. }
  52. // Show the image in the window named "result"
  53. cvShowImage( "result", img );
  54. cvWaitKey (30);
  55. }

注意该特征文件包含了手掌半握式的手势效果较好:

多谢大家,这么长时间的阅读和浏览,小弟做的很粗糙还有一些地方自已也没有弄明白,希望各位大神批评指教!

我已把源代码上传到对应的资源中去,以便大家学习修改!

http://download.csdn.net/detail/liuguiyangnwpu/7467891

http://blog.csdn.net/berguiliu/article/details/9307495

模式识别开发之项目---基于opencv的手势识别的更多相关文章

  1. c++开发ocx入门实践三--基于opencv的简易视频播发器ocx

    原文:http://blog.csdn.net/yhhyhhyhhyhh/article/details/51404649  利用opencv做了个简易的视频播放器的ocx,可以在c++/c#/web ...

  2. 用Visual C#开发基于OpenCV的Windows应用程序

    http://blog.163.com/wangxh_jy/blog/static/28233883201001581640283/ 关于详细的配置及程序运行截图,请下载:http://downloa ...

  3. Python C++ OpenCV TensorFlow手势识别(1-10) 毕设 定制开发

    Python C++ OpenCV TensorFlow手势识别(1-10) 毕设 支持定制开发 (MFC,QT, PyQt5界面,视频摄像头识别) QQ: 3252314061 效果如下:

  4. 基于Mint UI和MUI开发VUE项目一之环境搭建和首页的实现

    一:简介 Mint UI 包含丰富的 CSS 和 JS 组件,能够满足日常的移动端开发需要.通过它,可以快速构建出风格统一的页面,提升开发效率.真正意义上的按需加载组件.可以只加载声明过的组件及其样式 ...

  5. OpenCV2学习笔记(十四):基于OpenCV卡通图片处理

    得知OpenCV有一段时间.除了研究的各种算法的内容.除了从备用,据导游书籍和资料,尝试结合链接的图像处理算法和日常生活,第一桌面上(随着摄像头)完成了一系列的视频流处理功能.开发平台Qt5.3.2+ ...

  6. 基于opencv的车牌识别系统

    前言 学习了很长一段时间了,需要沉淀下,而最好的办法就是做一个东西来应用学习的东西,同时也是一个学习的过程. 概述     OpenCV的全称是:Open Source Computer Vision ...

  7. Java基于opencv实现图像数字识别(二)—基本流程

    Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...

  8. Java基于opencv实现图像数字识别(一)

    Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用Buffere ...

  9. 源码下载:74个Android开发开源项目汇总

    1. ActionBarSherlock ActionBarSherlock应该算得上是GitHub上最火的Android开源项目了,它是一个独立的库,通过一个API和主题,开发者就可以很方便地使用所 ...

随机推荐

  1. onCreate、onStart、onResume、onPause、onStop、onDestory(转)

    程序正常启动:onCreate()->onStart()->onResume();正常退出:onPause()->onStop()->onDestory() 一个Activit ...

  2. gitlab+gerrit+jenkins

    gitlab-repo 指在 gitlab 上的代码库, gerrit-repo 指在 gerrit 上的代码库: 从 gitlab-repo 上获取代码 本地修改, 提交 push 到 gerrit ...

  3. AC日记——最高奖励 51nod 1163

    最高的奖励 思路: 排序: 时间为第一关键字,按总小到大排: 价值为第二关键字,按从大到小排: 然后,不难看出,如果两个时间不同: 那么,两个时间之间最少能做一件事: 因为他们的时间下限最少相差1: ...

  4. ()centos6.8安装配置ftp服务器

    ftp传输原理 客户端通过某软件用某个端口(a端口)向服务端发起tcp连接请求,同时告诉服务端客户端另一个空闲端口号(b端口),服务端用21端口与客户端建立一条控制连接通道. 接着在默认情况下,服务端 ...

  5. Z划分空间

    /* https://blog.csdn.net/fastkeeper/article/details/38905249 https://max.book118.com/html/2017/1007/ ...

  6. CentOS 6.9编译安装Python-2.7.14(python升级)

    参考 Python官网:https://www.python.org/ 阿里云 https://www.aliyun.com/jiaocheng/517192.html 一.查看CentOS版本和系统 ...

  7. 线程和进程(Java)

    一.线程概述 线程是程序运行的基本执行单元.当操作系统(不包括单线程的操作系统,如微软早期的DOS)在执行一个程序时,会在系统中建立一个进程,而在这个进程中,必须至少建立一个线程(这个线程被称为主线程 ...

  8. java.lang.NoSuchMethodError: main Exception in thread "main" ===Exception

    java.lang.NoSuchMethodError: mainException in thread "main" 出现该异常是因为在之前我的项目中自定义了一个String类, ...

  9. Mac outlook设置自动回复

    outlook是公司必不可少的软件, 在mac下开发,当然用的是mac版的outlook,今天介绍一下如何设置mac下outlook的自动回复. 有两种方式的帐号,一种是Exchange accoun ...

  10. eclipse中修改JDK版本

    eclipse中,一个java项目依赖的JDK,需要进行绑定,但绑定的地方会有多个,类似层级结构. 1. eclipse的window -> preferences -> java com ...