题目链接

给出一个有N个数的序列,编号0 - N - 1。进行Q次查询,查询编号i至j的所有数中,最大的数是多少。

例如: 1 7 6 3 1。i = 1, j = 3,对应的数为7 6 3,最大的数为7。(该问题也被称为RMQ问题)

输入

第1行:1个数N,表示序列的长度。(2 <= N <= 10000)
第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9)
第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 10000)
第N + 3 - N + Q + 2行:每行2个数,对应查询的起始编号i和结束编号j。(0 <= i <= j <= N - 1)

输出 

共Q行,对应每一个查询区间的最大值。

输入样例

5
1
7
6
3
1
3
0 1
1 3
3 4

输出样例

7
7
3

Sparse Table解决Range Minimum/Maximum Query学习参考博客

代码参考博客

分析

ST用DP O(nlogn)预处理 ,O(1)查询。

设a[i]是要求区间最值的数列,RMQ[i, j]表示从第i个数起连续2^j个数中的最大值。

例如:

a数列为:3 2 4 5 6 8 1 2 9 7

RMQ[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。同理 RMQ[1,1] = max(3,2) = 3, RMQ[1,2]=max(3,2,4,5) = 5,RMQ[1,3] = max(3,2,4,5,6,8,1,2) = 8;

且[i,0]就等于a[i]。

状态转移方程RMQ[i, j]=max(RMQ[i,j-1], RMQ[i + 2^(j-1),j-1])。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#define maxn 10005
using namespace std; int a[maxn],RMQ[maxn][]; void RMQ_INIT(int n){
for(int i = ; i < n; ++i) RMQ[i][] = a[i];
for(int j = ; (<<j) <= n; ++j)
for(int i = ; i + (<<j) - < n; ++i)
RMQ[i][j] = max(RMQ[i][j-], RMQ[i + (<<(j-))][j-]);
} int Find(int L, int R){
int k = ;
while((<<(k+)) <= R-L+) k++;
return max(RMQ[L][k], RMQ[R-(<<k)+][k]);
} int main(){
int N,Q,L,R;
while(cin>>N){
memset(RMQ, , sizeof(RMQ));
for(int i=;i<N;++i) cin>>a[i];
RMQ_INIT(N);
cin>>Q;
while(Q--){
cin>>L>>R;
cout<<Find(L,R)<<endl;
}
}
return ;
}

51nod——1174 区间中最大的数(ST)的更多相关文章

  1. 51nod(1174 区间中最大的数)(ST表模板题)

    1174 区间中最大的数 1.0 秒 131,072.0 KB 0 分 基础题   给出一个有N个数的序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,最大的数是多少. 例如: 1 ...

  2. (DP ST表 线段树)51NOD 1174 区间中最大的数

    给出一个有N个数的序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,最大的数是多少.   例如: 1 7 6 3 1.i = 1, j = 3,对应的数为7 6 3,最大的数为7. ...

  3. 51Nod 1174 区间中最大的数

    给出一个有N个数的序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,最大的数是多少.   例如: 1 7 6 3 1.i = 1, j = 3,对应的数为7 6 3,最大的数为7. ...

  4. 51nod 1174 区间中最大的数(送盾题)

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出一个有N个数的序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,最大的数是多少. ...

  5. 51Nod—1174 区间中最大的数 线段树模版

    在大佬们题解的帮助下算是看懂了线段树吧...在这mark下防一手转头就忘. #include<iostream> #include<stdio.h> using namespa ...

  6. 51Nod 1174 区间中最大的数(RMQ)

    #include <iostream> #include <algorithm> #include <cstring> using namespace std; + ...

  7. 51nod 1174 1174 区间中最大的数

    题目链接:51nod 1174 1174 区间中最大的数 ST(Sparse Table)算法学习参考博客:http://blog.csdn.net/niushuai666/article/detai ...

  8. 51nod1174区间中最大的数

    1174 区间中最大的数基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注给出一个有N个数的序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中, ...

  9. 51nod--1174 区间中最大的数 (RMQ)

    题目: 1174 区间中最大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出一个有N个数的序列,编号0 - N - 1.进行Q次查询,查询编号i至j ...

随机推荐

  1. 2014-5-16 NOIP模拟赛

    Problem 1 抓牛(catchcow.cpp/c/pas) [题目描述] 农夫约翰被通知,他的一只奶牛逃逸了!所以他决定,马上出发,尽快把那只奶牛抓回来. 他们都站在数轴上.约翰在N(O≤N≤1 ...

  2. python+smtplib 发送测试报告到邮箱

    之前有介绍过怎样快速的搭建一个python测试框架 python+unittest 搭建简易的接口测试框架 这里介绍一下,怎样使用smtplib将测试报告发送到邮箱,这样使用jenkins定时巡检,执 ...

  3. EasyUI Datagrid换页不清出勾选方法

    在1.4版本后: 只要在datagrid中加入   idField:'id',给每条数据id属性,easyui就默认就会保留之前勾选的信息 如果没有id,才会出现换页后,之前勾选的信息没有的情况

  4. bzoj2806 [Apio2012]dispatching【可并堆】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 保存可并堆模版代码. #include <cstdio> #include ...

  5. MFC 创建UI线程

    对于windows来说,所有的线程都是一样的,但MFC却把线程区分为两种:用户界面(UI)线程和工作者线程.用户界面线程具有消息循环而工作者线程没有.UI线程可以创建窗口并给这些窗口发送消息,工作者线 ...

  6. 转 PHP 正则表达式 以及案例

    2.Perl兼容的语法扩充 Perl兼容的正则表达式的模式类似于Perl中的语法,表达式必须包含在定界符中,除数字.字母.反斜线外的任何字符都可以作为定界符.例如,表达式’/^(?i)php[34]/ ...

  7. Linux下Java运行.class文件,报错找不到或无法加载主类

    classpath配置的错误,所以找不到.class文件. 原先的etc/profile中的classpath配置 export CLASSPATH=$JAVA_HOME/lib/tools.jar ...

  8. Java之final、static关键字及匿名对象

    个人通俗理解: 1.final:首先被final修饰的变量就自动变成的不能被修改的常量了.被修饰的类会自动变成太监类,只能有父类,不能有子类:被修饰的方法也不能被子类重写了:被修饰的引用变量值也不能更 ...

  9. body和普通div背景图宽高百分比的区别

    body和普通div背景图的区别  background: url(//m.360buyimg.com/mobilecms/s220x220_jfs/t2746/167/831241799/29915 ...

  10. jQuery Deferred对象详细源码分析(-)

    本系列文章讲介绍这个Deferred东西到底拿来干什么,从1.5版本加进来,jQuery的很多代码都重写了.直接先上源码分析了,清楚了源码分析,下节将讲具体的应用 以及应用场景. 创建对象 var d ...