题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238

题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{n}{\frac{i*j}{gcd(i,j)}}$,$1\leq{n}\leq10^{10}$.

知识提要:小于等于n中与n互质的数总和为$\sum_{i=1}^{n}[(n,i)=1]i=\frac{\varphi(n)*n+[n=1]}{2}$

解析:

枚举最大公约数d,

$$Ans=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[(i,j)=1]i*j$$

我们先考虑 j<=i 的情况,

$$\quad\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{i}[(i,j)=1]i*j\\$$

$$=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\frac{\varphi(i)*i+[i=1]}{2}*i$$

还有i<=j的情况没考虑,其实两者是对称的 ,上面的式子乘2就好了,然后(1,1)这一对多算了一次了,所以-1就好了,

$$Ans=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)*i^2$$

令$F(n)=\sum_{i=1}^{n}\varphi(i)*i^2$

$$Ans=\sum_{d=1}^{n}d*F(\lfloor\frac{n}{d}\rfloor)$$

欧拉函数的前缀和$\phi(n)$之前博客里写过 按照类似的方法可以推出来

$$F(n)=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j)*i^2*j^2\\$$
$$=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}i^2\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j)*j^2\\$$
$$=\frac{n^2*(n+1)^2}{4}-\sum_{i=2}^{n}i^2F(\lfloor\frac{n}{i}\rfloor)$$

到此为止可以$O(n^{\frac{2}{3}})$求出Ans

AC代码

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
const int maxn=1e6+,inf=0x3f3f3f3f;
typedef long long ll;
const ll mod = ;
typedef pair<int,int> pii;
int check[maxn],prime[maxn],phi[maxn],sum[maxn];
void Phi(int N)//线性筛
{
int pos=;sum[]=;
sum[]=phi[]=;
for(ll i = ; i <= N ; i++)
{
if (!check[i])
prime[pos++] = i,phi[i]=i-;
for (int j = ; j < pos && i*prime[j] <= N ; j++)
{
check[i*prime[j]] = ;
if (i % prime[j] == )
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
sum[i]=(sum[i-]+(phi[i]*i%mod)*i%mod)%mod;
}
}
unordered_map<ll,ll> ma;
ll inv2=;
ll inv4=;
ll inv6=;
ll solve(ll n)
{
if(n<=1e6)
return sum[n];
else if(ma.count(n))
return ma[n];
ll temp = ((n%mod)*((n+)%mod)%mod)*inv2%mod;
temp=temp*temp%mod;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
ll r=(((j%mod)*((j+)%mod)%mod)*((*j+)%mod)%mod)*inv6%mod;
ll l=(((i%mod)*((i-)%mod)%mod)*((*i-)%mod)%mod)*inv6%mod;
r=(r-l+mod)%mod;
temp = (temp-solve(n/i)*r%mod+mod)%mod;
}
return ma[n]=temp;
}
int main()
{
ll n;
Phi(1e6);
scanf("%lld",&n);
ll ans=;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
ll r=((j%mod)*((j+)%mod)%mod)*inv2%mod;
ll l=((i%mod)*((i-)%mod)%mod)*inv2%mod;
r=(r-l+mod)%mod;
ans=(ans+solve(n/i)*r%mod)%mod;
}
printf("%lld\n",ans);
}

51 Nod 1238 最小公倍数之和 V3 杜教筛的更多相关文章

  1. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  2. 【51nod】1238 最小公倍数之和 V3 杜教筛

    [题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...

  3. 51 NOD 1238 最小公倍数之和 V3

    原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...

  4. [51Nod1238]最小公倍数之和 V3[杜教筛]

    题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...

  5. [51Nod 1238] 最小公倍数之和 (恶心杜教筛)

    题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑N​j=1∑N​lcm(i,j) 2<=N<=10102<=N ...

  6. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  7. 51nod 237 最大公约数之和 V3 杜教筛

    Code: #include <bits/stdc++.h> #include <tr1/unordered_map> #define setIO(s) freopen(s&q ...

  8. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  9. 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

随机推荐

  1. python 列表加法"+"和"extend"的区别

    相同点 : "+"和"extend"都能将两个列表成员拼接到到一起 不同点 :   + : 生成的是一个新列表(id改变) extend : 是将一个列表的成员 ...

  2. python解析库之 XPath

    1. XPath (XML Path Language) XML路径语言 2. XPath 常用规则: nodename    选取此节点的所有子节点 /                    从当前 ...

  3. 牛客网 Wannafly挑战赛21 灯塔

    Z市是一座港口城市,来来往往的船只依靠灯塔指引方向.在海平面上,存在n个灯塔.每个灯塔可以照亮以它的中心点为中心的90°范围.特別地, 由于特殊限制,每个灯塔照亮范围的角的两条边必须要么与坐标轴平行要 ...

  4. LA 3667 Ruler 搜索

    题意: 给出\(n\)个长度,要设计一个有\(m\)个刻度的刻度尺,刻度尺的刻度从\(0\)开始. 使得任意一个长度都能被该刻度尺度量出来. 首先要使\(m\)最小,在\(m\)最小的前提下尺子的长度 ...

  5. Linux IP怎么设置

    最常用的给网卡配置ip的命令为#ifconfig eth0 192.168.0.1 但是,这样重启后又打回原形.要想永久保存,需要 vim /etc/sysconfig/network-scripts ...

  6. Selenium WebDriver-操作键盘事件

    # 注意: !!!操作操作系统的按键,需要先装pywin32,然后通过交互模式import win32api和import win32con判断是否安装成功,需要重启下cmd进入交互模式# 下载链接: ...

  7. python-高级编程-04

    [http协议] 断句 : 由于tcp协议是基于流的传输协议,也就是在传输层本身是做不到断句的功能的, 于是断句需要在应用层协议实现.  最初用回车和换行来标示一套命令的结束 如果信息里面有 \r\n ...

  8. Leetcode 479.最大回文数乘积

    最大回文数乘积 你需要找到由两个 n 位数的乘积组成的最大回文数. 由于结果会很大,你只需返回最大回文数 mod 1337得到的结果. 示例: 输入: 2 输出: 987 解释: 99 x 91 = ...

  9. creat-react-app/dva静态项目,用nginx部署在次级域名路径(如a.com/sub/)需要注意的几点

    因为要把dist文件夹部署在一个域名的次级目录,没想到和运维同学一起折腾了一下午.. 放在这里备忘,也给后来的同学一些可查的中文资料: 1,dva/cra给你的模板index.html是在public ...

  10. Django中间件、Auth认证

    中间件 一:什么是中间件 是介于request与response处理之间的一道处理过程 二:中间件的作用 如果你想修改请求,例如被传送到view中的HttpRequest对象. 或者你想修改view返 ...