多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法。将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编号不超过k的顶点。于是我们最终要求的是dis[i][j][n-1].状态转移方程如下:

dis[i][j][k]=min{dis[i][j][k-1],dis[i][k][k-1]+dis[k][j][k-1]};

状态转移方程的解释:在计算dis[i][j][k]的时候,我们考虑 i 到 j 是否要经过顶点 k ,若不经过顶点 k ,那么结果就是 i 到 j 的最大路径经过的最大顶点不超过 k-1,也就是dis[i][j][k-1].倘若 i 到 j 经过顶点 k,那么i到j可以分为两部分之和,即 i 到k 和 k 到 j.这时候子问题最优解是 dis[i][k][k-1]和dis[k][j][k-1],这种情况下得到的原问题最优解是dis[i][k][k-1]+dis[k][j][k-1].所以综合起来:  dis[i][j][k]=min{dis[i][j][k-1],dis[i][k][k-1]+dis[k][j][k-1]};

在实现的时候没有必要使用三维数组。可以采用覆盖的方法:从k=0 to n-1 来计算,状态方程改变如下:

dis[i][j]=min{dis[i][j],dis[i][k]+dis[k][j]};

 #include<iostream>
using namespace std;
#define MAX_NUMBER INT_MAX/2
#define MAX_SIZE 100
struct Graph {
int V, E;
int R[MAX_SIZE][MAX_SIZE];
};
int path[MAX_SIZE][MAX_SIZE];
int dis[MAX_SIZE][MAX_SIZE];
void Floyd(Graph G);
void PrintPath(int i, int j);
int main() {
Graph G;
int i, j, w,k;
cin >> G.V >> G.E;
for (i = ; i < G.V; i++)
for (j = ; j < G.V; j++) {
G.R[i][j] = (i == j ? : MAX_NUMBER);
path[i][j]=i; //假设i到j有直接路径
}
//--------------------------------初始化
for (k = ; k < G.E; k++) {
cin >> i >> j >> w;
G.R[i][j] = G.R[j][i] = w;
}
Floyd(G);
for (i = ; i < G.V; i++) {
for (j = ; j < G.V; j++)
printf("%3d", dis[i][j]);
cout << endl;
}
printf("\n");
for (i = ; i < G.V; i++) {
for (j = ; j < G.V; j++)
printf("%3d", path[i][j]);
cout << endl;
}
PrintPath(,);
return ;
}
void Floyd(Graph G) {
int i, j, k;
for (i = ; i < G.V; i++)
for (j = ; j < G.V; j++)
dis[i][j] = G.R[i][j]; //初始化
for (k = ; k < G.V; k++)
for (i = ; i < G.V; i++)
for (j = ; j < G.V;j++)
if (dis[i][j]>dis[i][k] + dis[k][j]) { //更新
path[i][j] = k;
dis[i][j] = dis[i][k] + dis[k][j];
}
}
void PrintPath(int i, int j) {
if (i==j) {
printf("%3d", i);
return;
}
PrintPath(i,path[i][j]);
printf("%3d", j);
}

多源最短路径Floyd算法的更多相关文章

  1. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  2. 单源最短路径——Floyd算法

    正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意 ...

  3. 全源最短路径 - floyd算法 - O(N ^ 3)

    Floyd-Warshall算法的原理是动态规划. 设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度. 若最短路径经过点k,则Di,j,k = Di,k,k − 1 + ...

  4. 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)

    7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...

  5. 图->最短路径->多源最短路径(弗洛伊德算法Floyd)

    文字描述 求每一对顶点间的最短路径,可以每次以一个顶点为源点,重复执行迪杰斯特拉算法n次.这样,便可求得每一对顶点之间的最短路径.总的执行时间为n^3.但是还有另外一种求每一对顶点间最短路径的方法,就 ...

  6. 最短路径Floyd算法【图文详解】

    Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被 ...

  7. 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?

    简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...

  8. 图论之最短路径floyd算法

    Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5 ...

  9. 最短路径——Floyd算法(含证明)

    通过dij,ford,spfa等算法可以快速的得到单源点的最短路径,如果想要得到图中任意两点之间的最短路径,当然可以选择做n遍的dij或是ford,但还有一个思维量较小的选择,就是floyd算法. 多 ...

随机推荐

  1. 项目实战:CRM客户关系管理系统开发

    21-CRM第一节内容概要 21.1 Stark组件介绍:实现基本的增删改查+自定义复杂操作: 21.2 单例模式:最简单的单例模式: 21.3 路由系统(分发): 21.4 制作启动文件-Djang ...

  2. python-day4-装饰器的使用

    摘要:某公司的基础开发平台,有大概N多个函数,boss要求小A,为每个函数添加权限验证功能,而且要求不得修改函数内部结构,让小A尝试从代码外部入手,作为新手小A来讲,这无疑是一个巨大的工作量,难道TM ...

  3. Leetcode 507.完美数

    完美数 对于一个 正整数,如果它和除了它自身以外的所有正因子之和相等,我们称它为"完美数". 给定一个 正整数 n, 如果他是完美数,返回 True,否则返回 False 示例: ...

  4. c# 操作access数据库image ole字段

    using System; using System.Data; using System.Configuration; using System.Web; using System.Data.Ole ...

  5. 在smarty模板中使用PHP函数的方法

    在smarty模板中如果要在显示的资料使用php函数时,如果是只有一个参数的函数比如说去空白的trim会写成 sample1 代码如下: <{$colname|trim}> 那如果使用像i ...

  6. BZOJ 1087:[SCOI2005]互不侵犯King(状压DP)

    [SCOI2005]互不侵犯King [题目描述] 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  7. RS232与TTL

    TTL电平,RS232电平和CMOS电平 不同点:TTL232的0是用0v表示,1是用5V表示.RS232的0是用+3V--+15V表示,1是用-3V---15V表示. 接口一般都用三根线:1:地线: ...

  8. Java EE 学习(9):IDEA + maven + spring 搭建 web(5)- 博客文章管理

    转载:Gaussic(一个致力于AI研究却不得不兼顾项目的研究生) . 注:在阅读本文前,请先阅读: Java EE 学习(5):IDEA + maven + spring 搭建 web(1) Jav ...

  9. sql按照汉字首字母顺序排序(桃)

    SELECT * FROM 表名 order by CONVERT(字段名 USING gbk)

  10. [SaltStack] Multi-Master配置

    Multi Master配置 从salt 0.16.0版本开始, 管理minions可以使用multi-master特性. 当使用multi-master时, 所有masters均可以正常运行, 任何 ...