题目描述

如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减。试求出x的值。

输入输出格式

输入格式:

第一行一次包含一个正整数N和两个实数l、r,含义如题目描述所示。

第二行包含N+1个实数,从高到低依次表示该N次函数各项的系数。

输出格式:

输出为一行,包含一个实数,即为x的值。四舍五入保留5位小数。

输入输出样例

输入样例#1:

3 -0.9981 0.5
1 -3 -3 1
输出样例#1:

-0.41421

说明

时空限制:50ms,128M

数据规模:

对于100%的数据:7<=N<=13

样例说明:

如图所示,红色段即为该函数f(x)=x^3-3x^2-3x+1在区间[-0.9981,0.5]上的图像。

当x=-0.41421时图像位于最高点,故此时函数在[l,x]上单调增,[x,r]上单调减,故x=-0.41421,输出-0.41421。

三分法:(按照题目来)

风格1

#include<cstdio>
#include<cmath>
using namespace std;
const int N=1e5+;
const double eps=1e-;
int n;double L,R,a[N];
double f(double x){
double res=a[]+a[]*x;
for(int i=n;i>;i--) res=res+a[i]*pow(x,i);
return res;
}
double three_divide(){
double l=L,r=R,lmid,rmid;
while(r-l>eps){
lmid=(l+r)/2.0;
rmid=(r+lmid)/2.0;
if(f(lmid)<f(rmid)) l=lmid;
else r=rmid;
}
return l;
}
int main(){
scanf("%d",&n);
scanf("%lf%lf",&L,&R);
for(int i=n;i>=;i--) scanf("%lf",&a[i]);
printf("%.5lf",three_divide());
return ;
}

风格2

#include<cstdio>
#include<cmath>
using namespace std;
const int N=1e5+;
const double eps=1e-;
int n;double L,R,a[N];
double f(double x){
double res=a[]+a[]*x;
for(int i=n;i>;i--) res=res+a[i]*pow(x,i);
return res;
}
double three_divide(){
double l=L,r=R,lmid,rmid;
while(r-l>eps){
lmid=(*l+r)/3.0;
rmid=(l+*r)/3.0;
if(f(lmid)<f(rmid)) l=lmid;
else r=rmid;
}
return l;
}
int main(){
scanf("%d",&n);
scanf("%lf%lf",&L,&R);
for(int i=n;i>=;i--) scanf("%lf",&a[i]);
printf("%.5lf",three_divide());
return ;
}

二分法:(用导函数求0点)

#include<cstdio>
#include<cmath>
using namespace std;
const int N=1e5+;
const double eps=1e-;
int n;double L,R,a[N];
double F(double x){
double res=a[];
for(int i=n;i>;i--) res=res+(double)i*a[i]*pow(x,i-);
return res;
}
double two_divide(){
double l=L,r=R,mid;
while(r-l>eps){
mid=(l+r)/2.0;
if(F(mid)<=) r=mid;
else l=mid;
}
return l;
}
int main(){
scanf("%d",&n);
scanf("%lf%lf",&L,&R);
for(int i=n;i>=;i--) scanf("%lf",&a[i]);
printf("%.5lf",two_divide());
return ;
}

P3382 【模板】三分法的更多相关文章

  1. 【洛谷 p3382】模板-三分法(算法效率)

    题目:给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减.试求出x的值. 解法:与二分法枚举中点使区间分成2份不一样,三分法是枚举三分点,再根据题目的情况修 ...

  2. 洛谷P3382 【模板】三分法(三分找凹凸点)

    P3382 [模板]三分法 题目描述 如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减.试求出x的值. 输入输出格式 输入格式: 第一行一次包含一个 ...

  3. 洛谷 P3382 【模板】三分法(三分 二分)

    P3382 [模板]三分法 题目提供者HansBug 难度 普及/提高- 题目描述 如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减.试求出x的值. ...

  4. 洛谷P3382 【模板】三分法(三分)

    题目描述 如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减.试求出x的值. 输入输出格式 输入格式: 第一行一次包含一个正整数N和两个实数l.r,含 ...

  5. 洛谷 P3382 【模板】三分法

    https://www.luogu.org/problem/show?pid=3382 题目描述 如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减. ...

  6. [洛谷P3382]【模板】三分法

    题目大意:给出一个$N$次函数,保证在范围$[l,r]$内存在一点x,使得$[l,x]$上单调增,$[x,r]$上单调减.试求出$x$的值. 题解:求导,就变成了求零点,二分答案即可 卡点:无 C++ ...

  7. LUOGU P3382 【模板】三分法 (三分)

    传送门 解题思路 三分,填坑.每次取l与r的中间值mid,然后向左移一点点,向右移一点点进行判断,判断时用秦九韶算法即可. #include<iostream> #include<c ...

  8. [luogu P3382] 三分法

    [luogu P3382] 三分法 题目描述 如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减.试求出x的值. 输入输出格式 输入格式: 第一行一次 ...

  9. 三分法-洛谷P3382

    wampserver没下下来,lcm莫比乌斯反演写挂了,splay树段错误, nobody ever knows writing bugs better than me 然后今晚要打cf,不如先写个三 ...

随机推荐

  1. Android 利用工具实现一键自动findViewById功能

    在线网站工具 地址:http://android.lineten.net/layout.php

  2. POJ3086 Treats for the Cows(区间DP)

    题目链接  Treats for the Cows 直接区间DP就好了,用记忆化搜索是很方便的. #include <cstdio> #include <cstring> #i ...

  3. Java 8 Lambda表达式的使用

    lambda表达式允许你通过表达式来代替功能接口.lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块). Lambda表达式还增 ...

  4. char可不可以存汉字

    常见的面试题:char类型的变量可不可以存汉字 答案是可以的,char类型中存储的是Unicode编码,Unicode编码中是存在存在中文的,所以Char自然可以存储汉字,但是!仅限于Unicode中 ...

  5. 【java】java处理随机浮点数(小数点后两位)用RMB的大写数值规则输出

    晚上上床前,拿到这个有意思的问题,就想玩弄一番: =========================================================================== ...

  6. php开发中sql语句拼接示例

    1.插入语句 $sql="insert into Ad(AdClassID,AdType,AdTit,AdFileName,AdUrl,AShow,Addtime) values('&quo ...

  7. 2017.2.13 开涛shiro教程-第十二章-与Spring集成(二)shiro权限注解

    原博客地址:http://jinnianshilongnian.iteye.com/blog/2018398 根据下载的pdf学习. 第十二章-与Spring集成(二)shiro权限注解 shiro注 ...

  8. linux中ps命令的用法说明

      在linux中使用ps命令可以查看有哪些进程在运行和运行的状态.进程是否结束.进程有没有僵尸.哪些进程占用了过多的资源等等. ps命令最常用的是用于监控后台进程的工作情况. 名称:ps  www. ...

  9. JVM —— 移除永久代

    近期准备生产环境 JDK 升级到 1.8,本地先升级了下,发现 -XX:PermSize 和 -XX:MaxPermSize 已经失效,取而代之的是一个新的区域 -- Metaspace(元数据区). ...

  10. FreeMark的list应用

    语法:<#if></#if>后台传送List,前台html页面中获取该list并显示: <#if userList?exists> <#list userLi ...