Description

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.      

Input

The input consists of several test cases. Each test case starts with a line containing a single integer n (1 <= n <= 100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0 <= x1 < x2 <= 100000;0 <= y1 < y2 <= 100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.         The input file is terminated by a line containing a single 0. Don't process it.      

Output

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.         Output a blank line after each test case.      

Sample Input

2
10 10 20 20
15 15 25 25.5
0

Sample Output

Test case #1
Total explored area: 180.00

题目就是求所有矩形的并面积。

通过查阅知道了是扫描线,了解了扫描线的原理,用线段树手写了一下,结果PushUp函数写搓了。。看了AC的代码才知道了原因。

做法就是通过对纵坐标有序化,然后创建区间。

然后通过横向扫描过去,得到每段横向段的高度,乘以宽度就是面积了。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#define LL long long using namespace std; //线段树
//扫描线
const int maxn = 205;
struct node
{
int lt, rt;
double height;
int num;
}tree[4*maxn]; struct Line
{
double x;
double y1, y2;
bool isLeft;
}line[maxn]; bool cmp(Line a, Line b)
{
return a.x < b.x;
} double y[maxn]; //向上更新
void PushUp(int id)
{
if(tree[id].num > 0)
{
tree[id].height = y[tree[id].rt] - y[tree[id].lt];
return;
}
if(tree[id].lt+1 == tree[id].rt)
tree[id].height = 0;
else
tree[id].height = tree[id<<1].height + tree[id<<1|1].height;
} //建立线段树
void Build(int lt, int rt, int id)
{
tree[id].lt = lt;
tree[id].rt = rt;
tree[id].height = 0;//每段的初值,根据题目要求
tree[id].num = 0;
if (lt+1 == rt)
{
//tree[id].val = 1;
return;
}
int mid = (lt + rt) >> 1;
Build(lt, mid, id<<1);
Build(mid, rt, id<<1|1);
//PushUp(id);
} //寻找符合修改的区间通过判断num进行修改
void Updata(int id,Line p)
{
if(p.y1 <= y[tree[id].lt] && p.y2 >= y[tree[id].rt])
{
if (p.isLeft > 0)
tree[id].num++;
else
tree[id].num--;
PushUp(id);
return;
}
int mid = (tree[id].lt+tree[id].rt) >> 1;
if (p.y1 < y[mid])
Updata(id<<1, p);
if (p.y2 > y[mid])
Updata(id<<1|1, p);
PushUp(id);
} int n; void Input()
{
double x1, y1, x2, y2;
int cnt = 1;
for (int i = 0; i < n; ++i)
{
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
y[cnt] = y1;
y[cnt+1] = y2; line[cnt].x = x1;
line[cnt].y1 = y1;
line[cnt].y2 = y2;
line[cnt].isLeft = true; line[cnt+1].x = x2;
line[cnt+1].y1 = y1;
line[cnt+1].y2 = y2;
line[cnt+1].isLeft = false;
cnt += 2;
}
sort(y+1, y+1+2*n);
sort(line+1, line+1+2*n, cmp);
Build(1, 2*n, 1);
} double Work()
{
double ans = 0;
Updata(1, line[1]);
int len = 2*n;
for (int i = 2; i <= len; ++i)
{
ans += (line[i].x-line[i-1].x) * tree[1].height;
Updata(1, line[i]);
}
return ans;
} int main()
{
//freopen("test.in", "r", stdin);
int times = 1;
while (scanf("%d", &n) != EOF && n)
{
Input();
double ans = Work();
printf("Test case #%d\n", times);
printf("Total explored area: %.2lf\n\n", ans);
times++;
}
return 0;
}

ACM学习历程—POJ1151 Atlantis(扫描线 && 线段树)的更多相关文章

  1. poj1151 Atlantis——扫描线+线段树

    题目:http://poj.org/problem?id=1151 经典的扫描线问题: 可以用线段树的每个点代表横向被矩形上下边分割开的每一格,这样将一个矩形的出现或消失化为线段树上的单点修改: 每个 ...

  2. ACM学习历程—HDU 5289 Assignment(线段树 || RMQ || 单调队列)

    Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...

  3. ACM学习历程—HDU 2795 Billboard(线段树)

    Description At the entrance to the university, there is a huge rectangular billboard of size h*w (h ...

  4. poj1151 Atlantis (线段树+扫描线+离散化)

    有点难,扫描线易懂,离散化然后线段树处理有点不太好理解. 因为这里是一个区间,所有在线段树中更新时,必须是一个长度大于1的区间才是有效的,比如[l,l]这是一根线段,而不是区间了. AC代码 #inc ...

  5. ACM学习笔记:可持久化线段树

    title : 可持久化线段树 date : 2021-8-18 tags : 数据结构,ACM 可持久化线段树 可以用来解决线段树存储历史状态的问题. 我们在进行单点修改后,线段树只有logn个(一 ...

  6. POJ 1151 Atlantis (扫描线+线段树)

    题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...

  7. [HDU1542]Atlantis(扫描线+线段树)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  8. 【POJ1151】Atlantis(线段树,扫描线)

    [POJ1151]Atlantis(线段树,扫描线) 题面 Vjudge 题解 学一学扫描线 其实很简单啦 这道题目要求的就是若干矩形的面积和 把扫描线平行于某个轴扫过去(我选的平行\(y\)轴扫) ...

  9. hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积

    题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...

随机推荐

  1. 01 redis特点及安装使用

    一:redis的特点 ()redis是一个开源,BSD许可高级的key-value存储系统.可以用来存储字符串,哈希结构,链表,集合,因此,常用来提供数据结构服务. 二:redis和memcached ...

  2. 调整图像的尺寸 - cvResize() 函数实现

    前言 有时会碰到一张图片太大了,想将它缩小.本文将讲解一个很好用的函数解决这个问题. 图像尺寸调整函数 cvResize() // 图像尺寸调整函数 void Resize ( const CvArr ...

  3. urllib与urllib2的学习总结(python2.7.X): python urllib与urllib2

    https://www.cnblogs.com/wly923/archive/2013/05/07/3057122.html

  4. JS实现图片无缝滚动特效;附addEventListener()方法、offsetLeft和offsetWidth属性。

    一:html部分 <body> <input id="btn1" type="button" value="向左"> ...

  5. @Bean 和@ Component的区别

    @Component auto detects and configures the beans using classpath scanning whereas @Bean explicitly d ...

  6. EasyPlayerPro windows播放器之多窗口播放音量控制方法

    EasyPlayerPro-win基础版本的音频播放为单一通道播放,即同一时间仅允许一个通道播放声音,现应客户需求,在基础版本上实现独立的音频播放,即每个通道可同时播放视频和音频; 设计思路 将音频播 ...

  7. Notepad工具使用小技巧

    工欲善其事必先利其器 Notepad++是个很不错的文本编辑工具,掌握它的使用技巧可以提高我们工作的效率.见如下: 比较常用的罗列如下:(如果有更好的建议可以留言哈) 1: 添加书签 CTRL+F2 ...

  8. lamp环境的搭建和配置

    安装apache httpd-2.2.31.tar.gz rpm -qa|grep httpd   ##卸载旧的httpd httpd--.el6.centos.x86_64 httpd-tools- ...

  9. Git with SVN

    1)GIT是分布式的,SVN不是: 这 是GIT和其它非分布式的版本控制系统,例如SVN,CVS等,最核心的区别.好处是跟其他同事不会有太多的冲突,自己写的代码放在自己电脑上,一段时间后再提交.合并, ...

  10. Qt中的通用模板算法QtAlgorithms(qDeleteAll,qBinaryFind,qCountLeadingZeroBits,qPopulationCount,qFill,qSwap,qSort)

    Qt在<QtAlgorithms>头文件中为我们提供了一系列的全局模板方法,这些模板方法主要用于容器操作,比如qDeleteAll().其在Qt中的声明如下: void qDeleteAl ...