BZOJ4033 [HAOI2015]树上染色 【树形dp】
题目
有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并
将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。
问收益最大值是多少。
输入格式
第一行两个整数N,K。
接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to)。
输入保证所有点之间是联通的。
N<=2000,0<=K<=N
输出格式
输出一个正整数,表示收益的最大值。
输入样例
5 2
1 2 3
1 5 1
2 3 1
2 4 2
输出样例
17
提示
【样例解释】
将点1,2染黑就能获得最大收益。
题解
我dp真是太弱了
很自然地可以想到设一个dp状态\(f[i][j]\),表示\(i\)为根的子树中选\(j\)个黑点的最大收益
这个时候会不会有些奇怪?这个收益具体指什么?
由题目可知,我们得到的收益必须是成对点贡献出来的,每个区域不能作为独立的个体产生贡献
我们考虑把点与点间的贡献转移到边上
对于一条边\((u,v)\),我们记\(u\)一侧的黑点数为\(b_u\),白点数为\(w_u\),\(v\)一侧类似
那么该边的贡献就为
\]
那么我们改变一下:\(f[i][j]\)表示\(i\)为根的子树中选\(j\)个黑点,此时子树中的边产生的最大贡献
那么就很好转移了
对于节点\(i\),其子树的贡献已经算出,我们只需要考虑其到子树的边的贡献即可
我们枚举其儿子\(t\),并枚举儿子选的黑点数,再枚举剩余的子树的黑点数计入贡献
乍一看似乎\(O(n^3)\)
仔细分析一下,我们枚举的是子树的大小,每个子树产生的复杂度为\(O(siz[t] * (siz[u] - siz[t]))\),就相当于该子树的点与剩余子树的点形成的点对的个数
也就是说,我们实质在枚举点对,而且容易发现,每对点对只会在其\(lca\)处被枚举
所以可以保证是\(O(n^2)\)的
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 2005,maxm = 10005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt; LL w;}ed[maxm];
inline void build(int u,int v,LL w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
}
LL f[maxn][maxn],t[maxn];
int siz[maxn],fa[maxn],n,K;
inline void cmax(LL& a,LL b){if (a < b) a = b;}
void dfs(int u){
siz[u] = 1;
for (int i = 2; i <= n + 1; i++) f[u][i] = -INF;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u;
dfs(to);
for (int i = 0; i <= siz[u] + siz[to]; i++) t[i] = -INF;
for (int i = 0; i <= siz[u]; i++)
for (int j = 0; j <= siz[to]; j++)
cmax(t[i + j],f[u][i] + f[to][j] + ed[k].w * (j * (K - j) + (siz[to] - j) * (n - K - (siz[to] - j))));
siz[u] += siz[to];
for (int i = 0; i <= siz[u]; i++)
f[u][i] = t[i];
}
}
int main(){
n = read(); K = read();
int a,b; LL w;
for (int i = 1; i < n; i++){
a = read(); b = read(); w = read();
build(a,b,w);
}
dfs(1);
printf("%lld\n",f[1][K]);
return 0;
}
BZOJ4033 [HAOI2015]树上染色 【树形dp】的更多相关文章
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- [bzoj4033][HAOI2015]树上染色_树形dp
树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...
- 【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...
随机推荐
- HDU - 5491 The Next 2015 ACM/ICPC Asia Regional Hefei Online
从D+1开始,对于一个数x,区间[x,x+lowbit(x))内的数字的二进制位上1的数量整体来说是单调不减的,因此可快速得出1在这个区间的取值范围. 每次判断一下有没有和[s1,s2]有没有交集,一 ...
- 如何从Ubuntu 16.04 LTS升级到Ubuntu 18.04 LTS
可以说非常简单(假设过程顺利!!) 您只需打开Software&Update,进入"Updates"选项卡,然后从“有新版本时通知我”下拉菜单中选择“适用长期支持版”选项. ...
- js生成指定范围内随机数
其现方法的核心是JavaScript的Math对象.代码如下: <!DOCTYPE html> <html lang="en"> <head> ...
- python之可迭代对象
1. 可迭代对象是什么? 字面意思分析:可以重复的迭代的实实在在的东西 专业角度: 内部含有'__iter__'方法的对象,就是可迭代对象 2. 可迭代对象都有什么? list,dict(keys() ...
- 数据库连接池 dbcp与c3p0的使用区别
众所周知,无论现在是B/S或者是C/S应用中,都免不了要和数据库打交道.在与数据库交 互过程中,往往需要大量的连接.对于一个大型应用来说,往往需要应对数以千万级的用户连接请求,如果高效相应用户请求,对 ...
- shell脚本,awk里面的BEGIN讲解。
解释: BEGIN{}这个特殊的pattern最常用的就是 变量赋值. BEGIN这个pattern就是文件没开始读的时候 执行 awk 'BEGIN{FS=":";OFS=&qu ...
- 解决cocos2dx 3.x 导入cocostudio的ui界面出现错位问题
笔者今天发现导入cocostudio的ui界面时,会有部分控件出现错位的现象,后来我看了一下源码,发现是部分控件是没有继承 Layout类,导致不能设置控件位置造成,原因可以看看cocos2dx 源码 ...
- C#经典面试题——递归运算
今天开始写递归,然而始终不得甚解.借鉴别人的理解:假设我们现在都不知道什么是递归,我们自然想到打开浏览器,输入到谷歌的网页,我们点击搜索递归,然后我们在为维基百科中了解到了递归的基本定义,在了解到了递 ...
- GOPATH和GOROOT
安装指定版本golang apt-get purge golang* //删除之前安装的文件 add-apt-repository ppa:evarlast/golang-1.8 apt-get up ...
- Beyond Compare 4 30天试用期后,破解方法
Beyond Compare 4 30天试用期后,破解方法. 方法一:在安装目录下找到文件BCUnrar.dll,比如:D:\software\Beyond Compare 4,重命名该文件即可. 重 ...