题目

有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并

将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。

问收益最大值是多少。

输入格式

第一行两个整数N,K。

接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to)。

输入保证所有点之间是联通的。

N<=2000,0<=K<=N

输出格式

输出一个正整数,表示收益的最大值。

输入样例

5 2

1 2 3

1 5 1

2 3 1

2 4 2

输出样例

17

提示

【样例解释】

将点1,2染黑就能获得最大收益。

题解

我dp真是太弱了

很自然地可以想到设一个dp状态\(f[i][j]\),表示\(i\)为根的子树中选\(j\)个黑点的最大收益

这个时候会不会有些奇怪?这个收益具体指什么?

由题目可知,我们得到的收益必须是成对点贡献出来的,每个区域不能作为独立的个体产生贡献

我们考虑把点与点间的贡献转移到边上

对于一条边\((u,v)\),我们记\(u\)一侧的黑点数为\(b_u\),白点数为\(w_u\),\(v\)一侧类似

那么该边的贡献就为

\[w_{(u,v)} * (b_u * b_v + w_u * w_v)
\]

那么我们改变一下:\(f[i][j]\)表示\(i\)为根的子树中选\(j\)个黑点,此时子树中的边产生的最大贡献

那么就很好转移了

对于节点\(i\),其子树的贡献已经算出,我们只需要考虑其到子树的边的贡献即可

我们枚举其儿子\(t\),并枚举儿子选的黑点数,再枚举剩余的子树的黑点数计入贡献

乍一看似乎\(O(n^3)\)

仔细分析一下,我们枚举的是子树的大小,每个子树产生的复杂度为\(O(siz[t] * (siz[u] - siz[t]))\),就相当于该子树的点与剩余子树的点形成的点对的个数

也就是说,我们实质在枚举点对,而且容易发现,每对点对只会在其\(lca\)处被枚举

所以可以保证是\(O(n^2)\)的

  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cmath>
  4. #include<cstring>
  5. #include<algorithm>
  6. #define LL long long int
  7. #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
  8. #define REP(i,n) for (int i = 1; i <= (n); i++)
  9. #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
  10. using namespace std;
  11. const int maxn = 2005,maxm = 10005,INF = 1000000000;
  12. inline LL read(){
  13. LL out = 0,flag = 1; char c = getchar();
  14. while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
  15. while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
  16. return out * flag;
  17. }
  18. int h[maxn],ne = 2;
  19. struct EDGE{int to,nxt; LL w;}ed[maxm];
  20. inline void build(int u,int v,LL w){
  21. ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
  22. ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
  23. }
  24. LL f[maxn][maxn],t[maxn];
  25. int siz[maxn],fa[maxn],n,K;
  26. inline void cmax(LL& a,LL b){if (a < b) a = b;}
  27. void dfs(int u){
  28. siz[u] = 1;
  29. for (int i = 2; i <= n + 1; i++) f[u][i] = -INF;
  30. Redge(u) if ((to = ed[k].to) != fa[u]){
  31. fa[to] = u;
  32. dfs(to);
  33. for (int i = 0; i <= siz[u] + siz[to]; i++) t[i] = -INF;
  34. for (int i = 0; i <= siz[u]; i++)
  35. for (int j = 0; j <= siz[to]; j++)
  36. cmax(t[i + j],f[u][i] + f[to][j] + ed[k].w * (j * (K - j) + (siz[to] - j) * (n - K - (siz[to] - j))));
  37. siz[u] += siz[to];
  38. for (int i = 0; i <= siz[u]; i++)
  39. f[u][i] = t[i];
  40. }
  41. }
  42. int main(){
  43. n = read(); K = read();
  44. int a,b; LL w;
  45. for (int i = 1; i < n; i++){
  46. a = read(); b = read(); w = read();
  47. build(a,b,w);
  48. }
  49. dfs(1);
  50. printf("%lld\n",f[1][K]);
  51. return 0;
  52. }

BZOJ4033 [HAOI2015]树上染色 【树形dp】的更多相关文章

  1. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  2. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  3. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  4. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  5. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  8. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  9. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  10. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

随机推荐

  1. CF Gym 100463A (树状数组求逆序数)

    题意:给你一个序列,和标准序列连线,求交点数. 题解:就是求逆序对个数,用树状数组优化就行了.具体过程就是按照顺序往树状数组了插点(根据点的大小),因为第i大的点应该排在第i位,插进去的时候他前面本该 ...

  2. linux之切换用户su(switch user)

    1.切换至root su 或 su root然后输入密码 这种只切换身份,不切换home工作目录 su - 或 su - root然后输入密码 这种不仅切换身份,而且切换home工作目录 2.切换至普 ...

  3. 文件下载(NSURLConnection/NSURLSession)

    最基本的网络文件下载(使用原生的网络请求) #pragma mark - 小文件下载 // 方法一: NSData dataWithContentsOfURL - (void)downloadFile ...

  4. RSA非对称加密算法实现过程

    RSA非对称加密算法实现过程 非对称加密算法有很多,RSA算法就是其中比较出名的算法之一,下面是具体实现过程 <?php /** */ class Rsa { /** * private key ...

  5. Lecture 1

    Principles of GIS( UNSW Metternicht ) outline:data input---data management---data manipulation+data ...

  6. 蓝牙nrf52832的架构和开发(转载)

    相比TI的CC254X.DIALOG的DA1458X,nordic推出的nrf51822和nrf52832在架构和开发商都有自己独特的地方.这几颗产品都是蓝牙低功耗芯片.DA1458X使用OTP硬件架 ...

  7. German Collegiate Programming Contest 2018​

    // Coolest Ski Route #include <iostream> #include <cstdio> #include <cstring> #inc ...

  8. 二叉苹果树——树形Dp(由根到左右子树的转移)

    题意:给出一个二叉树,每条边上有一定的边权,并且剪掉一些树枝,求留下 Q 条树枝的最大边权和. ( 节点数 n ≤100,留下的枝条树 Q ≤ n ,所有边权和 ∑w[i] ≤30000 ) 细节:对 ...

  9. 利用http录制jmeter脚本

    1.在WorkBench下新建HTTP(S) Test Script Recorder,默认端口号为8080,假如8080被占用,则使用其他端口号:且为了使录制保存到线程组里,也同时新建一个线程组Tr ...

  10. SPOJ 1825 Free tour II 树分治

    题意: 给出一颗边带权的数,树上的点有黑色和白色.求一条长度最大且黑色节点不超过k个的最长路径,输出最长的长度. 分析: 说一下题目的坑点: 定义递归函数的前面要加inline,否则会RE.不知道这是 ...