题目链接


Solution

似乎就是个很简单的最长不上升子序列输出方案.

但是有一个很艹蛋的条件: 不同方案选择价格必须不同.

且其股票价格不保证不相同.

\(f[i]\) 代表以第 \(i\) 天结尾的不上升子序列的长度.

其实我们可以推出一个条件 : 相同的两个股票价格同时出现,后者的方案里面一定包括前者的.

这也是我们按平常做法多出来的方案数.

所以我们可以直接在 DP 的时候记录一个 \(g[i][j]\) 代表在 \(i\) 时由最后一个价值为 \(j\) 的已经累加的次数.

然后每次加上的便是 \(g[v][j]-g[i][j]\). 其中 \(v\) 为可以转移到 \(i\) 最优方案的节点.

Code

#include<bits/stdc++.h>
using namespace std;
const int maxn=5008;
int w[maxn],n;
int f[maxn];
map<int,int>g[maxn];
map<int,int>v;
int ans,ans_num;
int main()
{
scanf("%d",&n); w[0]=0x3f3f3f3f;
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
g[0][w[0]]=1; f[0]=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<i;j++)
if(w[i]<w[j])
if(f[j]+1>f[i])
f[i]=f[j]+1; for(int j=0;j<i;j++)
if(w[i]<w[j])
if(f[j]+1==f[i])
{
g[i][w[i]]+=(g[j][w[j]]-g[i][w[j]]);
g[i][w[j]]=g[j][w[j]];
}
}
for(int i=1;i<=n;i++)
if(f[i]>ans)ans=f[i];
for(int i=1;i<=n;i++)
if(f[i]==ans)
{
ans_num+=g[i][w[i]]-v[w[i]];
v[w[i]]=g[i][w[i]];
}
cout<<ans<<' '<<ans_num;
return 0;
}

P1108 低价购买 (动态规划)的更多相关文章

  1. 洛谷 P1108 低价购买

    P1108 低价购买 标签 动态规划 难度 提高+/省选- 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:& ...

  2. 洛谷 P1108 低价购买 解题报告

    P1108 低价购买 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买&quo ...

  3. P1108 低价购买 (DP)

    题目 P1108 低价购买 解析 这题做的我身心俱惫,差点自闭. 当我WA了N发后,终于明白了这句话的意思 当二种方案"看起来一样"时(就是说它们构成的价格队列一样的时候),这2种 ...

  4. P1108 低价购买——最长下降子序列+方案数

    P1108 低价购买 最长下降子序列不用多讲:关键是方案数: 在求出f[i]时,我们可以比较前面的f[j]; 如果f[i]==f[j]&&a[i]==a[j] 要将t[j]=0,去重: ...

  5. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  6. 洛谷P1108 低价购买

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  7. P1108 低价购买(DP)

    题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买".每次你购买一支股 ...

  8. 洛谷P1108 低价购买题解

    看到"你必须用低于你上次购买它的价格购买它",有没有想到什么?没错,又是LIS,倒过来的LIS,所以我们只要把读入的序列倒过来就可以求LIS了,第一问解决. 首先要厘清的是,对于这 ...

  9. P1108 低价购买

    传送门 思路: 对于第一问很容易看出是求最长下降子序列,N2 的暴力就可解决.而第二问是求最优方案数(且不重复),需要判重.可以在求解最长下降子序列的基础上增开一个数组 g ,g[ i ] 表示以 i ...

随机推荐

  1. IO流_File类

        流(stream):流是一连串流动的数据(字节.字符),以先进先出的方式发送的信息的通道中.    输入流   数据从源数据源流入程序的过程称为输入流.可以理解为从源数据源读取数据到程序的过程 ...

  2. Bootstrap历练实例:堆叠的进度条

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  3. 学习笔记(四): Representation:Feature Engineering/Qualities of Good Features/Cleaning Data/Feature Sets

    目录 Representation Feature Engineering Mapping Raw Data to Features Mapping numeric values Mapping ca ...

  4. NOIP模拟赛 混合图

    [题目描述] Hzwer神犇最近又征服了一个国家,然后接下来却也遇见了一个难题. Hzwer的国家有n个点,m条边,而作为国王,他十分喜欢游览自己的国家.他一般会从任意一个点出发,随便找边走,沿途欣赏 ...

  5. k8s资源指标API及metrics-server资源监控

    简述: 在k8s早期版本中,对资源的监控使用的是heapster的资源监控工具. 但是从 Kubernetes 1.8 开始,Kubernetes 通过 Metrics API 获取资源使用指标,例如 ...

  6. RSA非对称加密算法实现过程

    RSA非对称加密算法实现过程 非对称加密算法有很多,RSA算法就是其中比较出名的算法之一,下面是具体实现过程 <?php /** */ class Rsa { /** * private key ...

  7. 【linux】【安全】服务器安全建议

    引用自 <鸟哥的linux私房菜-服务器篇>  http://cn.linux.vbird.org/linux_server/0210network-secure_1.php 建立完善的登 ...

  8. ubuntu中卸载没有安装完全的软件包

    sudo apt-get autoclean sudo apt-get clean sudo apt-get autoremove

  9. C# NotifyIcon 托盘控件

    右下角以图标形式显示,双击图标显示界面,最小化界面时不显示在任务栏. 第一步:在界面上添加NotifyIcon控件. 第二步:设置notifyIcon1的属性,添加图标,将Visible设为true. ...

  10. Python语言程序设计之一--for循环中累加变量是否要清零

    最近学到了Pyhton中循环这一章.之前也断断续续学过,但都只是到了函数这一章就停下来了,写过的代码虽然保存了下来,但是当时的思路和总结都没有记录下来,很可惜.这次我开通了博客,就是要把这些珍贵的学习 ...