[LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数
试题描述
第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话:
您的文件存在被盗风险,为安全起见,您需要通过「智商·身份验证 ver. 5.0 β 版」的验证,以证明您是资料的主人。请写一个程序解决下述问题:
给定 \(p\),求最小的正整数 \(n\),使得 \(n! mod p = 0\)。
由于 \(p\) 很大,输入将给出 \(m\) 和 \(e_1, e_2, \cdots, e_m\),表示 \(p = \prod_{i = 1}^{m}{\mathrm{pr}_i^{e_i}}\),其中 \(\mathrm{pr}_i\) 是从小到大第 \(i\) 个质数。
一共有 \(T\) 个同样形式的问题需要解决。
输入
第一行包含一个正整数 \(T\) 表示数据组数。
每组数据第一行一个正整数 \(m\) 。
第二行包含 \(m\) 个非负整数,其中第 \(i\) 个数字表示 \(e_i(i = 1, 2, \cdots, m)\),相邻两个数字之间恰好有一个空格。
输出
输出共 \(T\) 行,每行包含一个数字,表示该组数据的答案。
输入示例1
1
5
1 1 1 1 1
输出示例1
11
输入示例2
1
12
1 3 4 6 7 9 10 12 13 15 16 18
输出示例2
666
数据规模及约定
设 \(a_i = \mathrm{pr}_i \cdot e_i(i = 1, 2, \cdots, m)\)。
对于所有数据,\(1\leq T \leq 10^4, 1 \leq m \leq 100, 0 \leq a_i \leq 10^{18}\)。
题解
就我的俩 log 的二分会 T。。。
考虑怎么省去一个 log,我们不二分,还是考虑每个质数 \(p\),设一个答案 \(N\),则 \(N!\) 中包含 \(p\) 的个数为 \(\sum_{x=1}^{\infty}{\lfloor \frac{N}{p^x} \rfloor}\)。
这等价于把 \(N\) 变成 \(p\) 进制,设第 \(k\) 为 \(p\) 进制的值为 \(v\),那么这位上的贡献就是 \((vv \cdots v)_p\)(即 \(p\) 进制下 \(k\) 个 \(v\) 的值),显然每一位上的贡献独立,于是预处理一下幂指数、前缀和啥的就可以 \(O(1)\) 算出 \(p\) 进制数上每一位的的值了。
然后对于 \(m\) 个质数分别做一遍,取最大值,记得还要和 \(1\) 取最大值。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long
LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define N 1000
#define maxn 110
#define Range (LL)1e18
bool vis[N];
int cp, prime[N], cntp[maxn];
LL pown[maxn][maxn], full[maxn][maxn];
void init() {
for(int i = 2; i < N; i++) {
if(!vis[i]) prime[++cp] = i;
for(int j = 1; j <= cp && prime[j] * i < N; j++) {
vis[prime[j]*i] = 1;
if(i % prime[j] == 0) break;
}
}
for(int i = 1; i <= 100; i++) {
pown[i][0] = 1;
full[i][0] = 0;
for(int j = 1; pown[i][j-1] <= Range / prime[i]; j++) {
cntp[i] = j;
pown[i][j] = pown[i][j-1] * prime[i];
full[i][j] = full[i][j-1] + pown[i][j] - 1;
// printf("full[%d][%d] = %lld\n", i, j, full[i][j]);
if(full[i][j] + pown[i][j] - 1 > Range) break;
}
}
return ;
}
void work() {
int n = read();
LL ans = 1;
for(int i = 1; i <= n; i++) {
LL need = read(), tmp = 0;
if(need < 1) continue;
int j;
for(j = 1; full[i][j] < need; j++) ;
// putchar('(');
for(; j; j--) {
LL now = (pown[i][j] - 1) / (prime[i] - 1), minx = (need - full[i][j-1] + now - 1) / now;
tmp += minx * pown[i][j];
// printf("[%lld - %lld + %lld - 1 %lld]", need, full[i][j-1], now, minx);
need -= minx * now;
if(need <= 0) break;
}
// printf("[0])%d %lld\n", prime[i], tmp);
ans = max(ans, tmp);
}
printf("%lld\n", ans);
return ;
}
int main() {
init();
int T = read();
while(T--) work();
return 0;
}
[LOJ#530]「LibreOJ β Round #5」最小倍数的更多相关文章
- 【数位贪心】loj#530. 「LibreOJ β Round #5」最小倍数
记录一下题解里写的算法四 题目描述 $1 \le T \le 10^4,1\le m\le 100,0\le a_i\le 10^{18}$. 题目分析 题解里的算法四是这么写的 主要是这个$\alp ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- loj #535. 「LibreOJ Round #6」花火 树状数组求逆序对+主席树二维数点+整体二分
$ \color{#0066ff}{ 题目描述 }$ 「Hanabi, hanabi--」 一听说祭典上没有烟火,Karen 一脸沮丧. 「有的哦-- 虽然比不上大型烟花就是了.」 还好 Shinob ...
随机推荐
- Android(java)学习笔记121:BroadcastReceiver之 自定义广播
广播使用: 电台:对外发送信号.---------电台发送广播(可以自定义) 收音机:接收电台的信号.-----广播接收者 这里,我们就说明自定 ...
- ubuntu开放端口
1.安装iptables(一般情况,ubuntu安装好的时候,iptables会被安装上),使用以下命令: $apt-get update $apt-get install iptables 2.安装 ...
- mysql group by的特殊性
SELECT create_year, userno , sum(sal) FROM user GROUP BY userno 以上语句,在oracle 或sql server肯定是语法错误 因为g ...
- Bootstrap 页面标题(Page Header)
Bootstrap页面标题(PageHeader)是个不错功能,它会网页的标题的四周添加适当的间距,当一个网页中有多个标题并且每个标题之间需要添加一定适当的间距,使用页面标题是非常有用的.如果需要使用 ...
- java用org.apache.poi包操作excel
一.POI简介 Jakarta POI 是apache的子项目,目标是处理ole2对象.它提供了一组操纵Windows文档的Java API 目前比较成熟的是HSSF接口,处理MS Excel(97- ...
- 01_12_Struts2_访问Web元素
01_12_Struts2_访问Web元素 1. 配置struts.xml文件 <package name="login" namespace="/login&qu ...
- NodeJS基础入门-Event
大多数Node.js核心API都采用惯用的异步事件驱动架构,其中某些类型的对象(触发器)会周期性地触发命名事件来调用函数对象(监听器). 例如,net.Server对象会在每次有新连接时触发事件;fs ...
- MySQL写delete语句时不支持表别名
今天写代码时发现了下面一个比较奇怪的问题: 有下面的删除数据的SQL ; 这个sql本来没有问题,但是在MySQL中执行时会报错 ; 原因是 MySQL写delete语句时不支持表别名,困扰了我一会儿 ...
- Python正则表达式详解——re库
一.简介 1.1.相关链接 官方文档: Python2:https://docs.python.org/2/library/re.html Python3:https://docs.python.or ...
- java中类与对象的概念(2013-05-04-bd 写的日志迁移
1:类是抽象的,概念的,代表一类事物,比如人类.猫类.. 2:对象是具体的,实际的,代表一个具体的事物 3:类是对象的模板,对象是类的一个个体,实例 创建对象的两种方法: 1.先声明在创建 对象声明: ...