对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?

Input

一个数N(1<=N<=2,000,000,000)。

Output

不超过N的最大的反质数。

Sample Input

1000

Sample Output

840
 

本题似乎要先知道许多结论,不要问我证明。。

一个数约数个数=所有素因子的次数+1的乘积
举个例子就是48 = 2 ^ 4 * 3 ^ 1,所以它有(4 + 1) * (1 + 1) = 10个约数

然后可以通过计算得一个2000000000以内的数字不会有超过12个素因子

并且小素因子多一定比大素因子多要优

预处理出前12个素数直接爆搜即可

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define inf 0x7fffffff
#define ll long long
using namespace std; int n,ans=,num=;
int p[]={,,,,,,,,,,,}; void dfs(int k,ll now,int cnt,int last)
{
if(k==)
{
if(now>ans&&cnt>num){ans=now;num=cnt;}
if(now<=ans&&cnt>=num){ans=now;num=cnt;}
return;
}
int t=;
for(int i=;i<=last;i++)
{
dfs(k+,now*t,cnt*(i+),i);
t*=p[k];
if(now*t>n)break;
}
}
int main()
{
scanf("%d",&n);
dfs(,,,);
printf("%d",ans);
}

【bzoj1053】[HAOI2007]反素数ant的更多相关文章

  1. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  2. BZOJ1053 [HAOI2007]反素数ant 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...

  3. [BZOJ1053] [HAOI2007] 反素数ant (搜索)

    Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...

  4. BZOJ1053: [HAOI2007]反素数ant(爆搜)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4163  Solved: 2485[Submit][Status][Discuss] Descript ...

  5. bzoj千题计划296:bzoj1053: [HAOI2007]反素数ant

    http://www.lydsy.com/JudgeOnline/problem.php?id=1053 求n以内约数个数最多的数 #include<cstdio> using names ...

  6. 【BZOJ1053】[HAOI2007]反素数ant 暴力

    [BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...

  7. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  8. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  9. bzoj 1053: [HAOI2007]反素数ant 搜索

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1497  Solved: 821[Submit][Sta ...

  10. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

随机推荐

  1. 影响一个UIView是否能正常显示的几个因素

    在使用代码实现UIView及其子类的对象的时候,经常会遇到创建的某个view没有显示在屏幕上.以下总结了本人遇到过的几种情况.可能还有些其它的原因也会导致view不能正常显示,限于个人经历有限,无法全 ...

  2. c#自定义类型之间的转换(强制类型转换)

    public class ResultModel { public string PlateNumber { get; set; } public int PlateColor { get; set; ...

  3. java从键盘输入三个整数,实现从小到大排序

    package study01; import java.util.Scanner; public class Sort { /** * 需求:由键盘输入三个整数分别存入变量a.b.c,对他们进行 排 ...

  4. 基于matlab的蓝色车牌定位与识别---识别

    接着昨天的工作,把最后一部分识别讲完. 关于字符识别这块,一种最省事的办法是匹配识别,将所得的字符和自己的标准字符库相减,计算所得结果,值最小的即为识别的结果.不过这种方法是在所得字符较为标准的情况, ...

  5. NOIP模拟赛 抓牛

    [题目描述] 农夫约翰被通知,他的一只奶牛逃逸了!所以他决定,马上出发,尽快把那只奶牛抓回来. 他们都站在数轴上.约翰在N(O≤N≤100000)处,奶牛在K(O≤K≤100000)处.约翰有两种办法 ...

  6. linux关于软件安装和测试

    软件都是盘上的安装之前确保已挂载完毕 1.安装软件 rpm -ivh httpd-2*   2.修改配置文件 vi /etc/httpd/conf/httpd.conf listen 8888   3 ...

  7. 基于Centos7.2搭建Cobbler自动化批量部署操作系统服务

    1       Cobbler服务器端系统环境配置 1.1     系统基本环境准备 [root@cobbler-server ~]# cat /etc/redhat-release CentOS L ...

  8. ubuntu中卸载没有安装完全的软件包

    sudo apt-get autoclean sudo apt-get clean sudo apt-get autoremove

  9. nrf51822微信开发2:[转]airkiss/airsync介绍

    "微信蓝牙"专题共分为8部分 1.airkiss/airsync介绍 2.eclipes的j2ee软件使用教程 3.微信公众号使用Dome(airkiss/airsync) 4.新 ...

  10. SolrCloud下DIH实践

    创建Collection 在/usr/local/solrcloud/solr/server/solr文件夹下创建coreTest文件夹 将/usr/local/solrcloud/solr/serv ...