Hashtable源码剖析
Hashtable简介
Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长。
Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中。
Hashtable同样实现了Serializable接口,它支持序列化,实现了Cloneable接口,能被克隆。
HashTable源码剖析
Hashtable的源码的很多实现都与HashMap差不多,源码如下(加入了比较详细的注释):
package java.util;
import java.io.*; public class Hashtable<K,V>
extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable { // 保存key-value的数组。
// Hashtable同样采用单链表解决冲突,每一个Entry本质上是一个单向链表
private transient Entry[] table; // Hashtable中键值对的数量
private transient int count; // 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)
private int threshold; // 加载因子
private float loadFactor; // Hashtable被改变的次数,用于fail-fast机制的实现
private transient int modCount = 0; // 序列版本号
private static final long serialVersionUID = 1421746759512286392L; // 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor); if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
} // 指定“容量大小”的构造函数
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
} // 默认构造函数。
public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
} // 包含“子Map”的构造函数
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
// 将“子Map”的全部元素都添加到Hashtable中
putAll(t);
} public synchronized int size() {
return count;
} public synchronized boolean isEmpty() {
return count == 0;
} // 返回“所有key”的枚举对象
public synchronized Enumeration<K> keys() {
return this.<K>getEnumeration(KEYS);
} // 返回“所有value”的枚举对象
public synchronized Enumeration<V> elements() {
return this.<V>getEnumeration(VALUES);
} // 判断Hashtable是否包含“值(value)”
public synchronized boolean contains(Object value) {
//注意,Hashtable中的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
} // 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
} public boolean containsValue(Object value) {
return contains(value);
} // 判断Hashtable是否包含key
public synchronized boolean containsKey(Object key) {
Entry tab[] = table;
//计算hash值,直接用key的hashCode代替
int hash = key.hashCode();
// 计算在数组中的索引值
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
} // 返回key对应的value,没有的话返回null
public synchronized V get(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
// 计算索引值,
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return e.value;
}
}
return null;
} // 调整Hashtable的长度,将长度变成原来的2倍+1
protected void rehash() {
int oldCapacity = table.length;
Entry[] oldMap = table; //创建新容量大小的Entry数组
int newCapacity = oldCapacity * 2 + 1;
Entry[] newMap = new Entry[newCapacity]; modCount++;
threshold = (int)(newCapacity * loadFactor);
table = newMap; //将“旧的Hashtable”中的元素复制到“新的Hashtable”中
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
Entry<K,V> e = old;
old = old.next;
//重新计算index
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = newMap[index];
newMap[index] = e;
}
}
} // 将“key-value”添加到Hashtable中
public synchronized V put(K key, V value) {
// Hashtable中不能插入value为null的元素!!!
if (value == null) {
throw new NullPointerException();
} // 若“Hashtable中已存在键为key的键值对”,
// 则用“新的value”替换“旧的value”
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V old = e.value;
e.value = value;
return old;
}
} // 若“Hashtable中不存在键为key的键值对”,
// 将“修改统计数”+1
modCount++;
// 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
// 则调整Hashtable的大小
if (count >= threshold) {
rehash(); tab = table;
index = (hash & 0x7FFFFFFF) % tab.length;
} //将新的key-value对插入到tab[index]处(即链表的头结点)
Entry<K,V> e = tab[index];
tab[index] = new Entry<K,V>(hash, key, value, e);
count++;
return null;
} // 删除Hashtable中键为key的元素
public synchronized V remove(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length; //从table[index]链表中找出要删除的节点,并删除该节点。
//因为是单链表,因此要保留带删节点的前一个节点,才能有效地删除节点
for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
} // 将“Map(t)”的中全部元素逐一添加到Hashtable中
public synchronized void putAll(Map<? extends K, ? extends V> t) {
for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
put(e.getKey(), e.getValue());
} // 清空Hashtable
// 将Hashtable的table数组的值全部设为null
public synchronized void clear() {
Entry tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
} // 克隆一个Hashtable,并以Object的形式返回。
public synchronized Object clone() {
try {
Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
t.table = new Entry[table.length];
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry<K,V>) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
} public synchronized String toString() {
int max = size() - 1;
if (max == -1)
return "{}"; StringBuilder sb = new StringBuilder();
Iterator<Map.Entry<K,V>> it = entrySet().iterator(); sb.append('{');
for (int i = 0; ; i++) {
Map.Entry<K,V> e = it.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key.toString());
sb.append('=');
sb.append(value == this ? "(this Map)" : value.toString()); if (i == max)
return sb.append('}').toString();
sb.append(", ");
}
} // 获取Hashtable的枚举类对象
// 若Hashtable的实际大小为0,则返回“空枚举类”对象;
// 否则,返回正常的Enumerator的对象。
private <T> Enumeration<T> getEnumeration(int type) {
if (count == 0) {
return (Enumeration<T>)emptyEnumerator;
} else {
return new Enumerator<T>(type, false);
}
} // 获取Hashtable的迭代器
// 若Hashtable的实际大小为0,则返回“空迭代器”对象;
// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
private <T> Iterator<T> getIterator(int type) {
if (count == 0) {
return (Iterator<T>) emptyIterator;
} else {
return new Enumerator<T>(type, true);
}
} // Hashtable的“key的集合”。它是一个Set,没有重复元素
private transient volatile Set<K> keySet = null;
// Hashtable的“key-value的集合”。它是一个Set,没有重复元素
private transient volatile Set<Map.Entry<K,V>> entrySet = null;
// Hashtable的“key-value的集合”。它是一个Collection,可以有重复元素
private transient volatile Collection<V> values = null; // 返回一个被synchronizedSet封装后的KeySet对象
// synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步
public Set<K> keySet() {
if (keySet == null)
keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;
} // Hashtable的Key的Set集合。
// KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。
private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return getIterator(KEYS);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
}
public void clear() {
Hashtable.this.clear();
}
} // 返回一个被synchronizedSet封装后的EntrySet对象
// synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步
public Set<Map.Entry<K,V>> entrySet() {
if (entrySet==null)
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entrySet;
} // Hashtable的Entry的Set集合。
// EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。
private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return getIterator(ENTRIES);
} public boolean add(Map.Entry<K,V> o) {
return super.add(o);
} // 查找EntrySet中是否包含Object(0)
// 首先,在table中找到o对应的Entry链表
// 然后,查找Entry链表中是否存在Object
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry)o;
Object key = entry.getKey();
Entry[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next)
if (e.hash==hash && e.equals(entry))
return true;
return false;
} // 删除元素Object(0)
// 首先,在table中找到o对应的Entry链表
// 然后,删除链表中的元素Object
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
K key = entry.getKey();
Entry[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e.hash==hash && e.equals(entry)) {
modCount++;
if (prev != null)
prev.next = e.next;
else
tab[index] = e.next; count--;
e.value = null;
return true;
}
}
return false;
} public int size() {
return count;
} public void clear() {
Hashtable.this.clear();
}
} // 返回一个被synchronizedCollection封装后的ValueCollection对象
// synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步
public Collection<V> values() {
if (values==null)
values = Collections.synchronizedCollection(new ValueCollection(),
this);
return values;
} // Hashtable的value的Collection集合。
// ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。
private class ValueCollection extends AbstractCollection<V> {
public Iterator<V> iterator() {
return getIterator(VALUES);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
Hashtable.this.clear();
}
} // 重新equals()函数
// 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等
public synchronized boolean equals(Object o) {
if (o == this)
return true; if (!(o instanceof Map))
return false;
Map<K,V> t = (Map<K,V>) o;
if (t.size() != size())
return false; try {
// 通过迭代器依次取出当前Hashtable的key-value键值对
// 并判断该键值对,存在于Hashtable中。
// 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。
Iterator<Map.Entry<K,V>> i = entrySet().iterator();
while (i.hasNext()) {
Map.Entry<K,V> e = i.next();
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(t.get(key)==null && t.containsKey(key)))
return false;
} else {
if (!value.equals(t.get(key)))
return false;
}
}
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
} return true;
} // 计算Entry的hashCode
// 若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。
// 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。
public synchronized int hashCode() {
int h = 0;
if (count == 0 || loadFactor < 0)
return h; // Returns zero loadFactor = -loadFactor; // Mark hashCode computation in progress
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)
for (Entry e = tab[i]; e != null; e = e.next)
h += e.key.hashCode() ^ e.value.hashCode();
loadFactor = -loadFactor; // Mark hashCode computation complete return h;
} // java.io.Serializable的写入函数
// 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
// Write out the length, threshold, loadfactor
s.defaultWriteObject(); // Write out length, count of elements and then the key/value objects
s.writeInt(table.length);
s.writeInt(count);
for (int index = table.length-1; index >= 0; index--) {
Entry entry = table[index]; while (entry != null) {
s.writeObject(entry.key);
s.writeObject(entry.value);
entry = entry.next;
}
}
} // java.io.Serializable的读取函数:根据写入方式读出
// 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the length, threshold, and loadfactor
s.defaultReadObject(); // Read the original length of the array and number of elements
int origlength = s.readInt();
int elements = s.readInt(); // Compute new size with a bit of room 5% to grow but
// no larger than the original size. Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int)(elements * loadFactor) + (elements / 20) + 3;
if (length > elements && (length & 1) == 0)
length--;
if (origlength > 0 && length > origlength)
length = origlength; Entry[] table = new Entry[length];
count = 0; // Read the number of elements and then all the key/value objects
for (; elements > 0; elements--) {
K key = (K)s.readObject();
V value = (V)s.readObject();
// synch could be eliminated for performance
reconstitutionPut(table, key, value);
}
this.table = table;
} private void reconstitutionPut(Entry[] tab, K key, V value)
throws StreamCorruptedException
{
if (value == null) {
throw new java.io.StreamCorruptedException();
}
// Makes sure the key is not already in the hashtable.
// This should not happen in deserialized version.
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
throw new java.io.StreamCorruptedException();
}
}
// Creates the new entry.
Entry<K,V> e = tab[index];
tab[index] = new Entry<K,V>(hash, key, value, e);
count++;
} // Hashtable的Entry节点,它本质上是一个单向链表。
// 也因此,我们才能推断出Hashtable是由拉链法实现的散列表
private static class Entry<K,V> implements Map.Entry<K,V> {
// 哈希值
int hash;
K key;
V value;
// 指向的下一个Entry,即链表的下一个节点
Entry<K,V> next; // 构造函数
protected Entry(int hash, K key, V value, Entry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} protected Object clone() {
return new Entry<K,V>(hash, key, value,
(next==null ? null : (Entry<K,V>) next.clone()));
} public K getKey() {
return key;
} public V getValue() {
return value;
} // 设置value。若value是null,则抛出异常。
public V setValue(V value) {
if (value == null)
throw new NullPointerException(); V oldValue = this.value;
this.value = value;
return oldValue;
} // 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o; return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
} public int hashCode() {
return hash ^ (value==null ? 0 : value.hashCode());
} public String toString() {
return key.toString()+"="+value.toString();
}
} private static final int KEYS = 0;
private static final int VALUES = 1;
private static final int ENTRIES = 2; // Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
// 指向Hashtable的table
Entry[] table = Hashtable.this.table;
// Hashtable的总的大小
int index = table.length;
Entry<K,V> entry = null;
Entry<K,V> lastReturned = null;
int type; // Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
// iterator为true,表示它是迭代器;否则,是枚举类。
boolean iterator; // 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
} // 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
public boolean hasMoreElements() {
Entry<K,V> e = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
} // 获取下一个元素
// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
// 然后,依次向后遍历单向链表Entry。
public T nextElement() {
Entry<K,V> et = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry<K,V> e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
}
throw new NoSuchElementException("Hashtable Enumerator");
} // 迭代器Iterator的判断是否存在下一个元素
// 实际上,它是调用的hasMoreElements()
public boolean hasNext() {
return hasMoreElements();
} // 迭代器获取下一个元素
// 实际上,它是调用的nextElement()
public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
} // 迭代器的remove()接口。
// 首先,它在table数组中找出要删除元素所在的Entry,
// 然后,删除单向链表Entry中的元素。
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException(); synchronized(Hashtable.this) {
Entry[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
} private static Enumeration emptyEnumerator = new EmptyEnumerator();
private static Iterator emptyIterator = new EmptyIterator(); // 空枚举类
// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
private static class EmptyEnumerator implements Enumeration<Object> { EmptyEnumerator() {
} // 空枚举类的hasMoreElements() 始终返回false
public boolean hasMoreElements() {
return false;
} // 空枚举类的nextElement() 抛出异常
public Object nextElement() {
throw new NoSuchElementException("Hashtable Enumerator");
}
} // 空迭代器
// 当Hashtable的实际大小为0;此时,又要通过迭代器遍历Hashtable时,返回的是“空迭代器”的对象。
private static class EmptyIterator implements Iterator<Object> { EmptyIterator() {
} public boolean hasNext() {
return false;
} public Object next() {
throw new NoSuchElementException("Hashtable Iterator");
} public void remove() {
throw new IllegalStateException("Hashtable Iterator");
} }
}
几点总结
针对Hashtable,我们同样给出几点比较重要的总结,但要结合与HashMap的比较来总结。
1、二者的存储结构和解决冲突的方法都是相同的。
2、HashTable在不指定容量的情况下的默认容量为11,而HashMap为16,Hashtable不要求底层数组的容量一定要为2的整数次幂,而HashMap则要求一定为2的整数次幂。
3、Hashtable中key和value都不允许为null,而HashMap中key和value都允许为null(key只能有一个为null,而value则可以有多个为null)。但是如果在Hashtable中有类似put(null,null)的操作,编译同样可以通过,因为key和value都是Object类型,但运行时会抛出NullPointerException异常,这是JDK的规范规定的。我们来看下ContainsKey方法和ContainsValue的源码:
// 判断Hashtable是否包含“值(value)”
public synchronized boolean contains(Object value) {
//注意,Hashtable中的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
} // 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
} public boolean containsValue(Object value) {
return contains(value);
} // 判断Hashtable是否包含key
public synchronized boolean containsKey(Object key) {
Entry tab[] = table;
/计算hash值,直接用key的hashCode代替
int hash = key.hashCode();
// 计算在数组中的索引值
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
}
很明显,如果value为null,会直接抛出NullPointerException异常,但源码中并没有对key是否为null判断,有点小不解!不过NullPointerException属于RuntimeException异常,是可以由JVM自动抛出的,也许对key的值在JVM中有所限制吧。
4、Hashtable扩容时,将容量变为原来的2倍加1,而HashMap扩容时,将容量变为原来的2倍。
5、Hashtable计算hash值,直接用key的hashCode(),而HashMap重新计算了key的hash值,Hashtable在求hash值对应的位置索引时,用取模运算,而HashMap在求位置索引时,则用与运算,且这里一般先用hash&0x7FFFFFFF后,再对length取模,&0x7FFFFFFF的目的是为了将负的hash值转化为正值,因为hash值有可能为负数,而&0x7FFFFFFF后,只有符号外改变,而后面的位都不变。
Hashtable源码剖析的更多相关文章
- 转:【Java集合源码剖析】Hashtable源码剖析
转载请注明出处:http://blog.csdn.net/ns_code/article/details/36191279 Hashtable简介 Hashtable同样是基于哈希表实现的,同样每个元 ...
- 【Java集合源码剖析】Hashtable源码剖析
转载出处:http://blog.csdn.net/ns_code/article/details/36191279 Hashtable简介 Hashtable同样是基于哈希表实现的,同样每个元素是一 ...
- JAVA的HashTable源码分析
Hashtable简介 Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长.Hashtable ...
- 并发-HashMap和HashTable源码分析
HashMap和HashTable源码分析 参考: https://blog.csdn.net/luanlouis/article/details/41576373 http://www.cnblog ...
- STL源码剖析——hashtable
二叉搜索树具有对数时间的搜索复杂度,但是这样的复杂度是再输入数据有足够的随机性的假设上哈希表在插入删除搜索操作上也具有常数时间的表现,而且这种表现是以统计为基础,不需要依赖输入元素的随机性 hasht ...
- STL"源码"剖析-重点知识总结
STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点略多 :) 1.STL概述 STL提供六大组件,彼此可以组合 ...
- 【转载】STL"源码"剖析-重点知识总结
原文:STL"源码"剖析-重点知识总结 STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点 ...
- STL"源码"剖析
STL"源码"剖析-重点知识总结 STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点略 ...
- HashMap源码剖析
HashMap源码剖析 无论是在平时的练习还是项目当中,HashMap用的是非常的广,真可谓无处不在.平时用的时候只知道HashMap是用来存储键值对的,却不知道它的底层是如何实现的. 一.HashM ...
随机推荐
- inclusion_tag 看图
- 安装配置Django
安装配置Django 以下是基于python3.5 pip install Django 把python环境目录Scripts配置到环境变量,主要在命令行中随时可以使用django-admin 验证 ...
- Eclipse如何删除插件
删除Eclipse安装的插件方法: help -> install new softWare -> what is already installed ->选中 要卸载的插件 -&g ...
- wx.onNetworkStatusChange(function (res) 监听网络状态变化 实践方案
网络状态 · 小程序 https://developers.weixin.qq.com/miniprogram/dev/api/device.html#wxonnetworkstatuschangec ...
- 远程服务器上的weblogic项目管理(三)常用指令及常见错误
weblogic的管理流程已在前两节整理完毕,接下来汇总一下linux环境下的weblogic管理常用指令及常见错误: 常用指令: ./startWebLogic.sh 启动weblogic ./st ...
- BCH硬分叉在即,Bitcoin ABC和NChain两大阵营PK
混迹币圈,我们都知道,BTC分叉有了BCH,而近期BCH也将面临分叉,这次分叉将是Bitcoin ABC和NChain两大阵营的较量,最后谁能成为主导,我们拭目以待. 比特币现金(BCH)的价格自上周 ...
- 在cocos2d-x中使用LUA
在cocos2d-x中使用LUA 1.注冊LUA脚本引擎 CCLuaEngine* pEngine = CCLuaEngine::defaultEngine(); CCScriptEngineMana ...
- Action类的工作机制
Action类的工作机制 Execute()方法包含以下参数 ActionMapping:包含了这个Action的配置信息,和struts-config.xml文件中的<action>元素 ...
- 用JAVA 的for循环输出 菱形
public class For{ public static void main(String[] args){ //首先.把菱形看成上下两部分,上五下四,所以,第一个for循环有5次,第二个for ...
- 应用索引技术优化SQL 语句(转)
原文出处 一.前言 很多数据库系统性能不理想是因为系统没有经过整体优化,存在大量性能低下的SQL 语句.这类SQL语句性能不好的首要原因是缺乏高效的索引.没有索引除了导致语句本身运行速度慢外,更是导致 ...