1812. [NOIP2014]子矩阵

http://www.cogs.pro/cogs/problem/problem.php?pid=1812

★★★   输入文件:submatrix.in   输出文件:submatrix.out   简单对比
时间限制:1 s   内存限制:256 MB

【题目描述】

最暴力的算法是枚举选择哪些行、列。复杂度为O(C(n,r)*C(m,c))。不过显然不能承受。(C为组合数)
注意到虽然O(C(n,r)*C(m,c))不能承受,但O(C(n,r))或O(C(m,c))是可以接受的。
不妨考虑枚举其中一个(假设枚举行)。
枚举完行后,由于行已确定,因此可以把所有行捆绑,视为一个整体。
处理处列与列之间的价值,然后可以用动态规划解决这个问题。
设dp[i][k]表示前i列选了k列,并且第i列强制被选。那么转移方程为:dp[i][k]=dp[j][k-1]+cost[j][i]+val[i],其中j<i,cost[j][i]表示第i列与第j列相邻的花费,val[i]表示第i列内的花费。
答案即为min{dp[i][c]}。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
using namespace std;
int a[][],m,n,r,c,lr[],ud[],dp[][];
int rlc[],udc[][],ans=0x7fffffff;
void Dp(){
memset(rlc,,sizeof(rlc));
memset(udc,,sizeof(udc));
memset(dp,/,sizeof(dp));
//不同列之间的差
for(int i=;i<=m;i++)
for(int j=;j<i;j++)
for(int k=;k<=r;k++)
udc[j][i]+=abs(a[lr[k]][i]-a[lr[k]][j]);
//不同行之间的差
for(int i=;i<=m;i++)
for(int j=;j<r;j++)
rlc[i]+=abs(a[lr[j]][i]-a[lr[j+]][i]);
for(int i=;i<=n;i++)dp[i][]=,dp[i][]=rlc[i];
for(int i=;i<=c;i++){
for(int j=i;j<=m;j++){
for(int k=i-;k<j;k++){
dp[j][i]=min(dp[k][i-]+udc[k][j]+rlc[j],dp[j][i]);
}
}
}
for(int i=c;i<=m;i++)ans=min(ans,dp[i][c]);
}
void dfs(int Step,int rest){
if(Step==r){Dp();return;}
if(r-Step>rest)return;
for(int i=rest;i>=;i--){lr[Step+]=i;dfs(Step+,i-);}
}
int main(){
freopen("submatrix.in","r",stdin);
freopen("submatrix.out","w",stdout);
scanf("%d%d%d%d",&n,&m,&r,&c);
for(int i=;i<=n;i++)for(int j=;j<=m;j++)scanf("%d",&a[i][j]);
dfs(,n);
printf("%d",ans);
}

[NOIP2014]子矩阵的更多相关文章

  1. Luogu 2258 [NOIP2014] 子矩阵

    被普及组虐了,感觉

  2. $NOIp$普及组做题记录

    \([NOIp2014]\) 螺旋矩阵 \(Sol\) 直接模拟,一次走一整行或者一整列.复杂度\(O(n)\). \(Code\) #include<bits/stdc++.h> #de ...

  3. 【NOIP2014】子矩阵

    这题如果按暴力做只有一半分,最大时间复杂度为O(C(16,8)*C(16,8)); 很容易算出超时: 我们可以发现如果直接dp会很难想,但是知道选哪几行去dp就很好写状态转移方程: dp[i][j]= ...

  4. 1768:最大子矩阵(NOIP2014初赛最后一题)

    1768:最大子矩阵 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如 ...

  5. NOIP2014 T4 子矩阵 dfs+dp

    最近在狂补题啊QAQ... 打算先把NOIP的干掉吧... 点我看题 链接还是放洛谷的了... 题意:给一个n*m的矩阵,在这个矩阵里选 r 行 c 列,然后这 r 行 c 列所相交的格子为新矩阵的, ...

  6. [NOIP2014普及组]子矩阵

    题目:洛谷P2258.Vijos P1914.codevs 3904. 题目大意:给你一个矩阵,要你找一个r行c列的子矩阵,求最小分值(子矩阵和分值的定义见原题). 解题思路:n和m比较小,考虑暴力. ...

  7. ACM 中 矩阵数据的预处理 && 求子矩阵元素和问题

            我们考虑一个$N\times M$的矩阵数据,若要对矩阵中的部分数据进行读取,比如求某个$a\times b$的子矩阵的元素和,通常我们可以想到$O(ab)$的遍历那个子矩阵,对它的各 ...

  8. [BZOJ1127][POI2008] KUP子矩阵

    Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...

  9. 【SCOI2005】 最大子矩阵 BZOJ 1084

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

随机推荐

  1. Docker与虚拟化

    核心知识点: 1.虚拟化的定义?虚拟化的核心和目标? 2.虚拟化的分类?Docker属于那种虚拟化? 3.Docker与传统虚拟化的区别?docker是直接在操作系统上实现虚拟化,直接复用本地操作系统 ...

  2. 基础 PHP 语法

    PHP 脚本在服务器上执行,然后向浏览器发送回纯 HTML 结果. 基础 PHP 语法 PHP 脚本可放置于文档中的任何位置. PHP 脚本以 <?php 开头,以 ?> 结尾: < ...

  3. 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA)

    主要内容: 一.降维与PCA 二.PCA算法过程 三.PCA之恢复 四.如何选取维数K 五.PCA的作用与适用场合 一.降维与PCA 1.所谓降维,就是将数据由原来的n个特征(feature)缩减为k ...

  4. HTML5 拖放:在相册中对照片进行排序

    1. [代码]index.html     <div class="albums">    <div class="album" id=&qu ...

  5. BZOJ 1579 [Usaco2009 Feb]Revamping Trails 道路升级:dijkstra 分层图【将k条边改为0】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1579 题意: 给你一个无向图,n个点,m条边,每条边有边权w[i]. 你可以将其中的k(k ...

  6. 搭建LoadRunner中的场景(二) 集合点

    Rendezvous: 这个单词来自于法语,军队集合的意思.LoadRunner中是指各虚拟用户在同一时刻完成指定的操作. 一. 集合点设置步骤 1. 在脚本中需要测试并发性能的操作之前加入集合点. ...

  7. [原创]java导出excel

    一.需求背景 在项目开发中,经常会遇到导出Excel报表文件的情况,因为很多情况下,我们需要打印Excel报表,虽然在网页上也可以生成报表,但是打印网上里的报表是无法处理排版问题的,所以最好的方式,还 ...

  8. 改善C#程序的建议10:用Parallel简化Task

    在命名空间System.Threading.Tasks下,有一个静态类Parallel简化了在同步状态下的Task的操作.Parallel主要提供了3个有用的方法:For.ForEach.Invoke ...

  9. PS 滤镜— —水波效果

    clc; clear all; close all; addpath('E:\PhotoShop Algortihm\Image Processing\PS Algorithm'); I=imread ...

  10. 模拟jQuery的一些功能

    //getStyle function getStyle(obj,attr){ if(obj.currentStyle){ return obj.currentStyle[attr]; } else{ ...