洛谷P1919 【模板】A*B Problem升级版(FFT)
话说FFT该不会真的只能用来做这种板子吧……
我们把两个数字的每一位都看作多项式的系数
然后这就是一个多项式乘法
上FFT就好了
然后去掉前导零
(然而连FFT的板子都背不来orz,而且空间又开小了……)
//minamoto
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);
}
const int N=2e5+;const double Pi=acos(-1.0);
int r[N],l=,limit=,c[N],n;char sa[N],sb[N];
struct complex{
double x,y;
complex(double xx=,double yy=){x=xx,y=yy;}
inline complex operator +(complex b){return complex(x+b.x,y+b.y);}
inline complex operator -(complex b){return complex(x-b.x,y-b.y);}
inline complex operator *(complex b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}a[N],b[N];
void FFT(complex *a,int type){
for(int i=;i<limit;++i)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int mid=;mid<limit;mid<<=){
complex Wn(cos(Pi/mid),type*sin(Pi/mid));
for(int R=mid<<,j=;j<limit;j+=R){
complex w(,);
for(int k=;k<mid;++k,w=w*Wn){
complex x=a[j+k],y=w*a[j+k+mid];
a[j+k]=x+y,a[j+k+mid]=x-y;
}
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n),--n;
scanf("%s%s",sa,sb);
for(int i=;i<=n;++i) a[i].x=sa[n-i]-'',b[i].x=sb[n-i]-'';
while(limit<=n*) limit<<=,++l;
for(int i=;i<=limit;++i) r[i]=(r[i>>]>>)|((i&)<<(l-));
FFT(a,),FFT(b,);
for(int i=;i<=limit;++i) a[i]=a[i]*b[i];
FFT(a,-);
for(int i=;i<=limit;++i) c[i]=(int)(a[i].x/limit+0.5);
for(int i=;i<=limit;++i)
if(c[i]>){
c[i+]+=c[i]/,c[i]%=;
if(i+>limit) ++limit;
}
for(int i=limit;i>=;--i)
if(c[i]==) --limit;
else break;
for(int i=limit;i>=;--i) print(c[i]);
Ot();
return ;
}
洛谷P1919 【模板】A*B Problem升级版(FFT)的更多相关文章
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 【洛谷P1919】A*B Problem升级版
题目大意:rt 题解:将长度为 N 的大整数看作是一个 N-1 次的多项式,利用 FFT 计算多项式的卷积即可. 代码如下 #include <bits/stdc++.h> using n ...
- 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)
洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P1919 【模板】A*B Problem升级版(FFT快速傅里叶)
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一 ...
- 洛谷P1919 A*B problem 快速傅里叶变换模板 [FFT]
题目传送门 A*B problem 题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【洛谷p1601】A+B Problem(高精)
高精度加法的思路还是很简单容易理解的 A+B Problem(高精)[传送门] 洛谷算法标签: 附上代码(最近懒得一批) #include<iostream> #include<cs ...
随机推荐
- 2016/07/07 apmserv5.2.6 Apache启动失败,请检查相关配置。MySQL5.1已启动。
因为要用PHP做一个程序,在本机上配PHP环境,下了个APMServ5.26,安装很简单,不再多说,装好后,启动,提示错误,具体是:“Apache启动失败,请检查相关配置.√MySQL5.1已启动”, ...
- Hadoop实战-使用Eclipse开发Hadoop API程序(四)
一.准备运行所需Jar包 1)avro-1.7.4.jar 2)commons-cli-1.2.jar 3)commons-codec-1.4.jar 4)commons-collections-3. ...
- 【C++基础学习】数据封装、构造函数
第一部分 类和对象 内存中按照用途被划分的五个区:栈区.堆区.全局区.常量区.代码区栈区由系统来进行控制,无论是内存的分配还是回收都不需要程序员关心堆区由new分配内存,使用完成之后必须使用delet ...
- 利用ES6中的Proxy和Reflect 实现简单的双向数据绑定
利用ES6中的Proxy (代理) 和 Reflect 实现一个简单的双向数据绑定demo. 好像vue3也把 obj.defineProperty() 换成了Proxy+Reflect. 话不多说 ...
- Spring AOP-xml配置
在spring AOP(一)中介绍了AOP的基本概念和几个术语,现在学习一下在XML中如何配置AOP. 在XML中AOP的配置元素有以下几种: AOP配置元素 描述 <aop:config> ...
- ubuntu安装ros indigo
版本是14.04.1 一.先配置 1.点击新立得软件包管理器,输入密码exbot123, 2,点击最上面一栏的设置,选择软件源,前四个打勾,后一个不打,把sevice america改成mainsev ...
- hdu1052 田忌赛马 —— 贪心
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052 错误代码: #include<stdio.h>//田忌赛马,错误版 #include ...
- Consul环境搭建
大家在玩的时候 一定要使用ningx 1.9以上版本啊! 下载:wget https://releases.hashicorp.com/consul/0.7.5/consul_0.7.5_linux_ ...
- codeforces B. Eugeny and Play List 解题报告
题目链接:http://codeforces.com/problemset/problem/302/B 题目意思:给出两个整数n和m,接下来n行给出n首歌分别的奏唱时间和听的次数,紧跟着给出m个时刻, ...
- get_extension_funcs 返回某个模块下的所有函数
array get_extension_funcs ( string $module_name ) (参数必选) 该函数根据 module_name 返回模块内定义的所有函数的 ...