题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041

题意:

  给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^2的圆周上,有多少个坐标为整数的点。

题解:

  科普视频:http://www.bilibili.com/video/av12131743/

  推导的大致思路:

  

  推导:

    一、17 = 4^2 + 1^2

      求圆周上有多少个点,就是求有多少个整数对(a,b)满足a^2 + b^2 = R^2。

    二、17 = (4+i)*(4-i)

      变形:a^2 + b^2 = (a + b*i) * (a - b*i) = R^2。

      其中,a + b*i 与 a - b*i 复共轭。

      也就是将R^2分解成(a + b*i) * (a - b*i)。

      有一个结论,对于整数a来说:

        (1)如果a为4n + 1型的素数,则a可以被分解为两个不同的高斯素数。

        (2)如果a为4n + 3型的素数,则不能被分解。因为它们不仅是普通素数,还是高斯素数。

      (即费马平方和定理:只有4n+1型的素数,才能表示成两个数的平方和)

      分解方法:

        (1)首先将R^2分解质因数,R^2 = a1^p1 + a2^p2 +...

        (2)然后将R^2继续分解成若干高斯素数之积。

        (3)将这些高斯素数分成两组,如果这两组各自之积复共轭,则为一对合法的(a,b)。

      其中,将高斯素数分组时,对于一个素因子ai,有pi+1中分组方法。

      特别地,2^k对于最终答案没有影响。

      根据乘法原理,在能够分组(分成复共轭数)的前提下,最终的分组方法数 = 4*∏(pi+1)。

      (这就是本题的做法。分解质因数,复杂度O(sqrt(N)))

    三、积性函数χ(n),求π的表达式(这部分跟此题无关)

      对于函数χ(n),定义为:

        (1)n = 4k + 1时,χ(n) = 1

        (2)n = 4k + 3时,χ(n) = -1

        (3)n为偶数时,χ(n) = 0

      函数χ(n)对于任意整数满足性质:χ(ab) = χ(a)*χ(b),所以χ(n)为积性函数。

      将圆上点的数量写成如下形式:

      

      即:N = 4*∏(∑ χ(ki)),ki为R^2的因子。

      将上式拆开,每一项χ(n)的n为R的因子:

      

      圆内所有点的个数:

      

      移动之后:

      

      所以得到了圆内点的个数,也就是圆面积的另一种表达形式。

      最终得到了一个π的表达式。

      

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; long long n;
long long ans=; int main()
{
cin>>n;
n=n*n;
long long t=n;
while(!(t&)) t>>=;
for(int i=;i*i<=n && t>;i++)
{
int p=;
while(t%i==)
{
p++;
t/=i;
}
if(i%==) ans*=(p+);
else if(i%== && (p&))
{
ans=;
break;
}
}
if(t%==) ans=;
cout<<ans*<<endl;
}

BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】的更多相关文章

  1. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  2. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  3. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  4. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  5. BZOJ 1041 [HAOI2008]圆上的整点:数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  6. BZOJ(2) 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4966  Solved: 2258[Submit][Sta ...

  7. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

  8. 【BZOJ】1041: [HAOI2008]圆上的整点(几何)

    http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041 所谓的神题,我不会,直接题解..看了半天看懂题解了.详见hzwer博客 这题呢,我只能 ...

  9. 1041: [HAOI2008]圆上的整点 - BZOJ

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数.Input rOutput 整点个数Sample Input4Sample Output4HINT n ...

随机推荐

  1. mysql:4种时间类型

    insert 12 ================= 养成良好的习惯,除了整形和浮点型不加'',其余都加,包括日期时间型

  2. .NET实现爬虫

    前几天看到一个.NET Core写成的爬虫,有些莫名的小兴奋,之前一直用集搜客去爬拉勾网的招聘信息,这个傻瓜化工具相当于用HTML模板页去标记DOM节点,然后在浏览器窗口上模拟人的浏览行为同时跟踪节点 ...

  3. 四种常见的POST提交数据方式

    POST一般用来向服务端提交数据,有四种提交数据的格式,分别是: 1.application/x-www-form-urlencoded 2.application/json 3.multipart/ ...

  4. NGINX下如何自定义404页面

    什么是404页面 如果碰巧网站出了问题,或者用户试图访问一个并不存在的页面时,此时服务器会返回代码为404的错误信息,此时对应页面就是404页面.404页面的默认内容和具体的服务器有关.如果后台用的是 ...

  5. Spring学习十二----------Bean的配置之@ImportResource和@Value

    © 版权声明:本文为博主原创文章,转载请注明出处 @ImportResource -引入XML配置文件 @Value -从配置文件中获取值 实例 1.项目结构 2.pom.xml <projec ...

  6. centos安装python3.7.0过程记录

    参考自这里,整理出以下步骤. 一.下载python3.7.0包地址:https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz 二.安装 登陆Li ...

  7. 牛牛有一个鱼缸。鱼缸里面已经有n条鱼,每条鱼的大小为fishSize[i] (1 ≤ i ≤ n,均为正整数),牛牛现在想把新捕捉的鱼放入鱼缸。鱼缸内存在着大鱼吃小鱼的定律。经过观察,牛牛发现一条鱼A的大小为另外一条鱼B大小的2倍到10倍(包括2倍大小和10倍大小),鱼A会吃掉鱼B。考虑到这个,牛牛要放入的鱼就需要保证:1、放进去的鱼是安全的,不会被其他鱼吃掉 2、这条鱼放进去也不能吃掉其他鱼

    // ConsoleApplication5.cpp : 定义控制台应用程序的入口点. // #include<vector> #include<algorithm> #inc ...

  8. 模式匹配之surf----特征点检测学习_2(surf算法)

    在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就 ...

  9. wpf 获取datagrid 模板列中的控件

    目前采用的 方法  (网上提供的一款) public static DataGridRow GetRow(DataGrid datagrid, int columnIndex)        {    ...

  10. 关于 Delphi 中流的使用(7) 压缩与解压缩(TCompressionStream、TDecompressionStream)

    unit Unit1; interface uses   Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, For ...