BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041
题意:
给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^2的圆周上,有多少个坐标为整数的点。
题解:
科普视频:http://www.bilibili.com/video/av12131743/
推导的大致思路:
推导:
一、17 = 4^2 + 1^2
求圆周上有多少个点,就是求有多少个整数对(a,b)满足a^2 + b^2 = R^2。
二、17 = (4+i)*(4-i)
变形:a^2 + b^2 = (a + b*i) * (a - b*i) = R^2。
其中,a + b*i 与 a - b*i 复共轭。
也就是将R^2分解成(a + b*i) * (a - b*i)。
有一个结论,对于整数a来说:
(1)如果a为4n + 1型的素数,则a可以被分解为两个不同的高斯素数。
(2)如果a为4n + 3型的素数,则不能被分解。因为它们不仅是普通素数,还是高斯素数。
(即费马平方和定理:只有4n+1型的素数,才能表示成两个数的平方和)
分解方法:
(1)首先将R^2分解质因数,R^2 = a1^p1 + a2^p2 +...
(2)然后将R^2继续分解成若干高斯素数之积。
(3)将这些高斯素数分成两组,如果这两组各自之积复共轭,则为一对合法的(a,b)。
其中,将高斯素数分组时,对于一个素因子ai,有pi+1中分组方法。
特别地,2^k对于最终答案没有影响。
根据乘法原理,在能够分组(分成复共轭数)的前提下,最终的分组方法数 = 4*∏(pi+1)。
(这就是本题的做法。分解质因数,复杂度O(sqrt(N)))
三、积性函数χ(n),求π的表达式(这部分跟此题无关)
对于函数χ(n),定义为:
(1)n = 4k + 1时,χ(n) = 1
(2)n = 4k + 3时,χ(n) = -1
(3)n为偶数时,χ(n) = 0
函数χ(n)对于任意整数满足性质:χ(ab) = χ(a)*χ(b),所以χ(n)为积性函数。
将圆上点的数量写成如下形式:
即:N = 4*∏(∑ χ(ki)),ki为R^2的因子。
将上式拆开,每一项χ(n)的n为R的因子:
圆内所有点的个数:
移动之后:
所以得到了圆内点的个数,也就是圆面积的另一种表达形式。
最终得到了一个π的表达式。
AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; long long n;
long long ans=; int main()
{
cin>>n;
n=n*n;
long long t=n;
while(!(t&)) t>>=;
for(int i=;i*i<=n && t>;i++)
{
int p=;
while(t%i==)
{
p++;
t/=i;
}
if(i%==) ans*=(p+);
else if(i%== && (p&))
{
ans=;
break;
}
}
if(t%==) ans=;
cout<<ans*<<endl;
}
BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】的更多相关文章
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ(2) 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4966 Solved: 2258[Submit][Sta ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 【BZOJ】1041: [HAOI2008]圆上的整点(几何)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041 所谓的神题,我不会,直接题解..看了半天看懂题解了.详见hzwer博客 这题呢,我只能 ...
- 1041: [HAOI2008]圆上的整点 - BZOJ
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数.Input rOutput 整点个数Sample Input4Sample Output4HINT n ...
随机推荐
- Bootstrap 模态框、轮播 结合使用
Bootstrap 模态框和轮播分开使用的教程网上非常多.可是两者结合使用的样例和资料非常少. 两者结合使用时,開始我遇到了不少bug,如今分享给大家. 我的这个样例是把图片轮播嵌入到模态框里. 最后 ...
- Async Await 使用
1.简单例子 var sleep = function (time) { return new Promise(function (resolve, reject) { setTimeout(func ...
- tyvj-1460 旅行
题目描写叙述: A国有n座城市,每座城市都十分美,这使得A国的民众们很喜欢旅行. 然而,A国的交通十分落后,这里仅仅有m条双向的道路.而且这些道路都十分崎岖,有的甚至还是山路.仅仅能靠步行.通过每条道 ...
- 【转载】ASP.Net WebForm温故知新学习笔记:一、aspx与服务器控件探秘
开篇:毫无疑问,ASP.Net WebForm是微软推出的一个跨时代的Web开发模式,它将WinForm开发模式的快捷便利的优点移植到了Web开发上,我们只要学会三步:拖控件→设属性→绑事件,便可以行 ...
- chm文件打不开的解决办法
我今天在网上找了找C++函数库,下载下来一个 .chm 文件,打开之后发现只显示了目录,内容却显示不出来. 显示是这样:右边区域显示不出来. 在网上查了一下发现CHM文件是网上比较多的电子书籍显示格式 ...
- robotframe使用之滚动条
方法一:Excute JavaScript window.scrollTo(0,document.body.scrollHeight); 方法二:Execute javascript document ...
- Linux系统下授权MySQL账户访问指定数据库和数据库操作
Linux系统下授权MySQL账户访问指定数据库 需求: 1.在MySQL中创建数据库mydata 2.新建MySQL账户admin密码123456 3.赋予账户admin对数据库mydata具有完全 ...
- 写一段代码,判断一个包括'{','[','(',')',']','}'的表达式是否合法(注意看样例的合法规则。) 给定一个表达式A,请返回一个bool值,代表它是否合法。
这道题比较奇怪,它的匹配规则并不是我们平时想想的那种匹配规则,例如:平时的匹配规则是().{}.[]才能匹配,本题中(和} .].)都能匹配.所以做题时要好好审题.另外,本题中给的测试用例是错误的. ...
- android 自定图库(转)
githup: https://github.com/pengjianbo/GalleryFinal GalleryFinal简介 Android自定义相册,实现了拍照.图片选择(单选/多选). 裁剪 ...
- Android使用ViewPager实现无限循环滑动及轮播(附源代码)
MainActivity例如以下: package cc.ww; import java.util.ArrayList; import android.app.Activity; import and ...