第一步仍然是导入库和数据集。

''' To classify images using a reccurent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. '''

这里我们设定了各种参数,此时的n_steps是指按照28个时间点,依次输入数据。因为mnist数据集是28*28的,每次只能输入一行,所以n_input是28,分成28次顺序输入。

y是输出,仍然是一个10维数组。None设为并行数。

注意这里的权值,weights矩阵变成了[n_hidden,n_classes],前面是指这个RNN一共有多少个隐藏的单元(如下图):

中间那些绿色的状态,可以看作是隐藏的单元。之后建立一个矩阵,将隐藏单元转换成一个数组。当然再分类问题上,更常见的做法是在RNN上加一层全连接层(就像BP网络一样),在进行输出,在效果上比纯粹进行一次矩阵运算会好一些。

来看网络结构。

tf.unstack() 将给定的R维张量拆分成R-1维张量:将value根据axis分解成num个张量,返回的值是list类型,如果没有指定num则根据axis推断出。在这个李子中,我们通过这个函数将x按照第二维切开来,分成一行一行的,x变成了一个list,每个元素就是一次输出,list的长度就是step数。

BasicLSTMCell()函数中的forget_bias参数,一般设置为1.0。

众所周知,lstm单元有两个输出,一个是h,一个是$s_n$。此处我们将两个豆取回,然后RNN最终输出那个分类,即做了一次线性变换的值。

我们实例化RNN,然后定义cost和optimizer。

通过比较label和输出,来得到一个正确与否的0-1矩阵,之后计算精确度。

最后初始化所有的变量,开始训练。

其中用while循环来控制循环体,将x,y作为feed_dict输入网络,迭代运算损失。

最后进行测试。sess.run()这里表示进行accuracy的计算。

【TensorFlow入门完全指南】神经网络篇·循环神经网络(RNN)的更多相关文章

  1. TensorFlow学习笔记(六)循环神经网络

    一.循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据.循环神经网络刻画了一个序列当前的输出与之前信息的关系.从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出. ...

  2. 学习笔记TF057:TensorFlow MNIST,卷积神经网络、循环神经网络、无监督学习

    MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .Ten ...

  3. 【TensorFlow入门完全指南】神经网络篇·卷积神经网络

    加载数据集. 这里的keep_prob是dropout的一个参数.dropout是一种随机置零的策略,用来防止模型过拟合. 这里定义两层,上面是卷积层,下面是池化层. 搭建了一层卷积.一层池化.一层卷 ...

  4. 【TensorFlow入门完全指南】神经网络篇·MLP多层感知机

    前面的不做过多解释了. 这里定义了两个占位符,各位也知道,在训练时,feed_dict会填充它们. 定义相关网络. 这里是权值矩阵和偏差. 这里是实例化了网络,定义了优化器和损失,和上一篇一样. 最后 ...

  5. 【TensorFlow入门完全指南】神经网络篇·自动编码机

    自动编码机(Autoencoder)属于非监督学习,不需要对训练样本进行标记.自动编码机(Autoencoder)由三层网络组成,其中输入层神经元数量与输出层神经元数量相等,中间层神经元数量少于输入层 ...

  6. 【TensorFlow入门完全指南】模型篇·逻辑斯蒂回归模型

    import库,加载mnist数据集. 设置学习率,迭代次数,batch并行计算数量,以及log显示. 这里设置了占位符,输入是batch * 784的矩阵,由于是并行计算,所以None实际上代表并行 ...

  7. 【TensorFlow入门完全指南】模型篇·线性回归模型

    首先呢,进行import,对于日常写代码来说,第二行经常写成:import numpy as np,这样会更加简洁.第三行import用于绘图. 定义了学习率.迭代数epoch,以及展示的学习步骤,三 ...

  8. 【TensorFlow入门完全指南】模型篇·最近邻模型

    最近邻模型,更为常见的是k-最近邻模型,是一种常见的机器学习模型,原理如下: KNN算法的前提是存在一个样本的数据集,每一个样本都有自己的标签,表明自己的类型.现在有一个新的未知的数据,需要判断它的类 ...

  9. 【TensorFlow入门完全指南】基本操作

    众所周知我暂时弃掉了那个音乐生成的坑,原因是我的代码写得还不够纯熟…… 现在我找到了一个项目,用来从代码基础开始补起,同时写下学习笔记. 项目地址:https://github.com/aymeric ...

随机推荐

  1. day02-HTML(2)

    一.新知识 1.  !+tab   html5的标签结构   2.  Charset   编码 Ascll Ansi Unicode Gbk Gb2312 Big5 Utf-8   通用字符集 3.关 ...

  2. UNPIVOT逆透视以及动态逆透视存储过程

    前几天一直练习PIVOT透视,还实现了动态透视的存过程<动态透视表>https://www.cnblogs.com/insus/p/10888277.html 今天练习MS SQL Ser ...

  3. PHP面向对象--接口实例

    我们设计一个在线销售系统,用户部分设计如下: 将用户分为,NormalUser, VipUser, InnerUser三种. 要求根据用户的不同折扣计算用户购买产品的价格. 并要求为以后扩展和维护预留 ...

  4. 2017 Gartner Hype Cycle for Emerging Technologies: AI, AR/VR, Digital Platforms

  5. git小白的学习

    1.1 Git介绍 1.1.1 什么是Git Git是一个开源的分布式版本控制系统,可以有效.高速地处理从很小到非常大的项目版本管理.Git 是 Linus Torvalds 为了帮助管理 Linux ...

  6. 在线获取键盘按键值(ascii码)工具

    在线获取键盘按键值(ascii码)工具 http://www.bejson.com/othertools/keycodes/ 可以根据输入的值获取对应的键盘ascii码值

  7. [LOJ 2039] 「SHOI2015」激光发生器

    [LOJ 2039] 「SHOI2015」激光发生器 链接 链接 题解 分为两个部分 第一个是求直线之间的交点找到第一个触碰到的镜面 第二个是求直线经过镜面反射之后的出射光线 第一个很好做,第二个就是 ...

  8. 一篇文章彻底了解Java垃圾收集(GC)机制

    垃圾收集(Garbage Collection ,GC),是一个长久以来就被思考的问题,当考虑GC的时候,我们必须思考3件事情: 哪些内存需要回收? 什么时候回收? 如何回收? 那么在Java中,我们 ...

  9. struts的logic标签和<bean:write/>详情

    https://baike.baidu.com/item/Logic%E6%A0%87%E7%AD%BE/2292947?fr=aladdin https://blog.csdn.net/applea ...

  10. NET Core 2.0 微服务跨平台实践

    NET Core 2.0 微服务跨平台实践 相关博文: Ubuntu 简单安装 Docker Mac OS.Ubuntu 安装及使用 Consul Consul 服务注册与服务发现 Fabio 安装和 ...