• A finite set of states St summarizing the information the agent senses from the environment at every time step t ∈ {1, ..., T}.

• A set of actions At which the agent can perform at each time step t ∈ {1, ..., T} to interact with the environment.

• A set of transition probabilities between subsequent states which render the environment stochastic. Note: the probabilities are usually not explicitly modeled but the result of the stochastic nature of the financial asset’s price process.

• A reward (or return) function Rt which provides a numerical feedback value rt to the agent in response to its action At−1 = at−1 in state St−1 = st−1.

• A policy π which maps states to concrete actions to be carried out by the agent. The policy can hence be understood as the agent’s rules for how to choose actions.

• A value function V which maps states to the total (discounted) reward the agent can expect from a given state until the end of the episode (trading period) under policy π.

Given the above framework, the decision problem is formalized as finding the optimal policy π = π ∗ , i.e., the mapping from states to actions, corresponding to the optimal value function V ∗ - see also Dempster et al. (2001); Dempster and Romahi (2002):

  V (st) = max at E[Rt+1 + γV (St+1)|St = st ].(1)

Hereby, E denotes the expectation operator, γ the discount factor, and Rt+1 the expected immediate reward for carrying out action At = at in state St = st . Further, St+1 denotes the next state of the agent. The value function can hence be understood as a mapping from states to discounted future rewards which the agent seeks to maximize with its actions.

To solve this optimization problem, the Q-Learning algorithm (Watkins, 1989) can be applied, extending the above equation to the level of state-action tuples:

  Q (st , at) = E[Rt+1 + γ max at+1 Q (St+1, at+1)|St = st , At = at ].(2)

Hereby, the Q-value Q∗ (st , at) equals to the immediate reward for carrying out action At = at in state St = st plus the discounted future reward from carrying on in the best way possible.

The optimal policy π (the mapping from states to actions) then simply becomes:

  π (st) = max at Q (st , at) .(3)

i.e., in every state St = st , choose the action At = at that yields the highest Q-value. To approximate the Q-function during (online) learning, an iterative optimization is carried out with α denoting the learning rate - see also Sutton and Barto (1998) for further details:

  Q (st , at) ← (1 − α) Q (st , at) + α (rt+1 + γ max at+1 Q (st+1, at+1) ) . (4)

a survey for RL的更多相关文章

  1. (转)Applications of Reinforcement Learning in Real World

    Applications of Reinforcement Learning in Real World 2018-08-05 18:58:04 This blog is copied from: h ...

  2. 论文笔记系列-Neural Network Search :A Survey

    论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...

  3. (zhuan) 一些RL的文献(及笔记)

    一些RL的文献(及笔记) copy from: https://zhuanlan.zhihu.com/p/25770890  Introductions Introduction to reinfor ...

  4. A Survey of Visual Attention Mechanisms in Deep Learning

    A Survey of Visual Attention Mechanisms in Deep Learning 2019-12-11 15:51:59 Source: Deep Learning o ...

  5. Generalizing from a Few Examples: A Survey on Few-Shot Learning 小样本学习最新综述 | 三大数据增强方法

    目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled ...

  6. 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications

    知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...

  7. SharePoint 2010 Survey的Export to Spreadsheet功能怎么不见了?

    背景信息: 最近用户报了一个问题,说他创建的Survey里将结果导出成Excel文件(Export to spreadsheet)的按钮不见了. 原因排查: 正常情况下,这个功能只存在于SharePo ...

  8. 中间值为什么为l+(r-l)/2,而不是(l+r)/2

    二分法的算法中,我们看到一些代码里取中间值: MID=l+(r-l)/2; 为什么是这个呢?不就是(l+r)/2吗?为什么要多此一举呢? 其实还是有不一样的,看看他们的区别吧: l,r是指针的时候只能 ...

  9. SharePoint Tricks - Survey

    1. SharePoint 2010中,在Survey的问题框中输入HTML代码可以用于插入图片或者链接,具体方法为: 1.1 在问题框中输入html, 1.2 在New Form和Edit Form ...

随机推荐

  1. 移动端专用css

    通过设置css属性 -webkit-tap-highlight-color: rgba(0, 0, 0, 0);取消掉手机端webkit浏览器 点击按钮或超链接之类的 默认灰色背景色 设置css属性 ...

  2. unite2017相关

    日程 http://unite2017.csdn.net/ http://www.sohu.com/a/137202360_280780 http://www.gameres.com/750046.h ...

  3. [Xcode 实际操作]七、文件与数据-(5 )复制、移动、删除文件和删除文件夹

    目录:[Swift]Xcode实际操作 本文将演示如何复制.移动和删除文件. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import UIKit class ...

  4. 基于canvas绘图 缩放 做标记

    技术要点: 1.img 绘制到canvas 2.绘制完成以后进行拖拽,缩放 3.使用canvas画图,在绘制的img上进行标记划线,当然可以实现跟过功能,例如百度地图的功能,做单个标记,区域标记等. ...

  5. express前后的分离session的使用

    express前后端分离session的使用 1.后端app.js中增加 app.all('*', function(req, res, next) { res.header("Access ...

  6. C 语言实例 - 输出九九乘法口诀表

    C 语言实例 - 输出九九乘法口诀表 使用嵌套 for 循环输出九九乘法口诀表. 实例 #include<stdio.h> int main(){ //外层循环变量,控制行 ; //内层循 ...

  7. Java与Javac版本不一致问题解决方案

    问题:在自己电脑上运行java -version和javac -version,发现java版本不一致,然后查看了环境变量,JAVA_HOME 是 C:\Program Files(x86)\Java ...

  8. mysql实现rownum方法

    1.语句:SELECT @rownum:=@rownum+1 AS rownum, Orderstate.* FROM (SELECT @rownum:=0) r, Orderstate ; 执行结果 ...

  9. GPU程序缓存(GPU Program Caching)

    GPU程序缓存 翻译文章: GPU Program Caching 总览 / 为什么 因为有一个沙盒, 每一次加载页面, 我们都会转化, 编译和链接它的GPU着色器. 当然不是每一个页面都需要着色器, ...

  10. spring 3.2.7 applicationContext.xml

    <?xml version="1.0" encoding="UTF-8" ?> <beans xmlns="http://www.s ...