bzoj3622
容斥原理
看见恰好k个就要容斥
g[i]表示有几个b比a小
dp[i][j]表示前i个数至少有j个大的方案数,dp[i][j]=dp[i-1][j]+dp[i-1][j-1]*(g[i]-j+1),就是可以不匹配,或者在剩下的g[i]-j+1选一个
然后就是容斥了,那个系数搞的不是很清楚,和spring一样
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = , P = 1e9 + ;
int n, k;
ll ans;
ll a[N], b[N], inv[N], facinv[N], fac[N], dp[N][N], g[N];
ll C(int n, int m)
{
return fac[n] * facinv[m] % P * facinv[n - m] % P;
}
int main()
{
scanf("%d%d", &n, &k);
for(int i = ; i <= n; ++i) scanf("%d", &a[i]);
for(int i = ; i <= n; ++i) scanf("%d", &b[i]);
if((n + k) & )
{
puts("");
return ;
}
k += (n - k) >> ;
sort(a + , a + n + );
sort(b + , b + n + );
inv[] = ; fac[] = facinv[] = ;
for(int i = ; i <= n; ++i)
{
if(i != ) inv[i] = (P - P / i) * inv[P % i] % P;
facinv[i] = facinv[i - ] * inv[i] % P;
fac[i] = fac[i - ] * i % P;
}
for(int i = , j = ; i <= n; ++i)
{
while(a[i] > b[j + ] && j + <= n) ++j;
g[i] = j;
}
for(int i = ; i <= n; ++i) dp[i][] = ;
for(int i = ; i <= n; ++i)
for(int j = ; j <= g[i]; ++j)
dp[i][j] = (dp[i - ][j] + dp[i - ][j - ] * (g[i] - j + ) % P) % P;
for(int i = k; i <= n; ++i) ans = ((ans + (((i - k) & ) ? - : ) * dp[n][i] * fac[n - i] % P * C(i, k) % P) % P + P) % P;
printf("%lld\n", ans);
return ;
}
bzoj3622的更多相关文章
- BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学
原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...
- 【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了
再谈容斥原理来两道套路几乎一致的题目[BZOJ2839]集合计数Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交 ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)
[BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...
- BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)
显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- [BZOJ3622]已经没有什么好害怕的了(容斥DP)
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
- bzoj3622已经没有什么好害怕的了
bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...
- BZOJ3622 已经没有什么好害怕的了
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
随机推荐
- react 路由传参
今天,我们要讨论的是react router中Link传值的三种表现形式.分别为通过通配符传参.query传参和state传参. ps:进入正题前,先说明一下,以下的所有内容都是在react-rout ...
- 【每日Scrum】第三天(4.13) TD学生助手Sprint1站立会议
TD学生助手Sprint1站立会议(4.13) 任务看板 站立会议内容 组员 昨天 今天 困难 签到 刘铸辉 (组长) 昨天完成了课程的增删改查功能 今天早晨静姐调整了下界面和配色,下午和宝月兄一起做 ...
- http://www.cnblogs.com/yycxbjl/archive/2010/04/20/1716689.html
http://www.cnblogs.com/yycxbjl/archive/2010/04/20/1716689.html PS: 开发工具 VS2010, 所有工程都为Debug状态,本人刚接触 ...
- PHP中多维数组查找某个值是否存在的方法
in_array — 检查数组中是否存在某个值,只是这个方法不能检查多维数组. 所以可以编写类似下面的递归方法来检查多维数组. function deep_in_array($value, $arra ...
- C---指针篇
指针变量:专门存放内存地址的一种变量 听说C因为指针而强大 一段代码来解释 指针 *指针 &指针 &指向变量 的关系 /* * 返回指针所指向内存地址中存放的值 它是单目运算符 也称作 ...
- POJ 3335 Rotating Scoreboard(半平面交 多边形是否有核 模板)
题目链接:http://poj.org/problem? id=3335 Description This year, ACM/ICPC World finals will be held in a ...
- HDU1009_FatMouse' Trade【贪心】【水题】
FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- multiTarget within one project pods manage
step1:file->new->target create 1 targetstep2:change Podfile and update podstep3:check new targ ...
- js中变量的声明
大家都知道js中变量的声明是要提前的,下面有4个样例: 1.if(!"t" in window){ var t = 1; } alert(t);答案是undefine ...
- c/c++预处理命令#pragma
1 #pragma pack(push, 1)和#pragma pack(pop) #pragma pack用于指定数据在内存中的对齐方式.如果不指定对齐方式的话,默认为自然对齐. 1.1 #prag ...