题目链接

POJ2152

题解

经典老题,还真暴力

\(n \le 1000\),所以可以\(O(n^2)\)做

所以可以枚举每个点依附于哪一个点

设\(f[u]\)表示以\(u\)为根的子树的最小代价

\(g[u][v]\)表示\(u\)依附于\(v\)时以\(u\)为根的子树的最小代价

显然

\[f[u] = min\{ g[u][v] \}
\]

\[g[u][v] = cost[v] + \sum\limits_{(u,to) \in edge} min(g[to][v] - cost[v],f[to]) \quad [dis(u,v) \le D(u)]
\]

\(dis(u,v)\)要直接暴力\(O(n^2)\)预处理

上倍增直接\(T\)掉。。。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne;
struct EDGE{int to,nxt,w;}ed[maxn << 1];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
}
int fa[maxn],f[maxn],g[maxn][maxn],cost[maxn],d[maxn],dis[maxn][maxn],n,rt;
void DFS(int u,int D,int F){
dis[rt][u] = D;
Redge(u) if ((to = ed[k].to) != F)
DFS(to,D + ed[k].w,u);
}
void dfs(int u){
f[u] = INF;
REP(i,n)
if (dis[u][i] <= d[u]) g[u][i] = cost[i];
else g[u][i] = INF;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; dfs(to);
REP(i,n) if (g[u][i] != INF)
g[u][i] += min(g[to][i] - cost[i],f[to]);
}
REP(i,n) f[u] = min(f[u],g[u][i]);
}
int main(){
int T = read();
while (T--){
n = read(); ne = 2; cls(h);
REP(i,n) cost[i] = read();
REP(i,n) d[i] = read();
int a,b,w;
for (int i = 1; i < n; i++){
a = read(); b = read(); w = read();
build(a,b,w);
}
REP(i,n) rt = i,DFS(i,0,0);
dfs(1);
printf("%d\n",f[1]);
}
return 0;
}

POJ2152 Fire 【树形dp】的更多相关文章

  1. POJ2152 Fire (树形DP)

    题意:n个城市n-1条边 组成一棵树 在每个城市修建消防站会有一个花费costi 每个城市能防火当且仅当地图上距离他最近的消防站距离小于di   问如何修建消防站 使地图上所有的城市都有预防火灾的能力 ...

  2. [poj2152]fire_树形dp

    fire poj-2152 题目大意:给出一颗树,给出两个相邻节点的距离,以及每个节点的接受范围,还有当前节点的代价.我们想要求出覆盖整个图的最小代价. 注释:一个点被覆盖,当且仅当该点有防火站或者这 ...

  3. POJ 2152 Fire(树形DP)

    题意: 思路:令F[i][j]表示 的最小费用.Best[i]表示以i为根节点的子树多有节点都找到负责消防站的最小费用. 好难的题... #include<algorithm> #incl ...

  4. poj2152 Fire(树形DP)

    题目链接:https://vjudge.net/problem/POJ-2152 题意:给定一颗大小为n的树,在每个结点建消防站花费为w[i],如果某结点没有消防站,只要在它距离<=d[i]的结 ...

  5. Fire (poj 2152 树形dp)

    Fire (poj 2152 树形dp) 给定一棵n个结点的树(1<n<=1000).现在要选择某些点,使得整棵树都被覆盖到.当选择第i个点的时候,可以覆盖和它距离在d[i]之内的结点,同 ...

  6. POJ 2152 Fire (树形DP,经典)

    题意:给定一棵n个节点的树,要在某些点上建设消防站,使得所有点都能够通过某个消防站解决消防问题,但是每个点的建站费用不同,能够保证该点安全的消防站的距离上限也不同.给定每个点的建站费用以及最远的消防站 ...

  7. 树形 DP 总结

    树形 DP 总结 本文转自:http://blog.csdn.net/angon823/article/details/52334548 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在“树 ...

  8. 【转】【DP_树形DP专辑】【9月9最新更新】【from zeroclock's blog】

    树,一种十分优美的数据结构,因为它本身就具有的递归性,所以它和子树见能相互传递很多信息,还因为它作为被限制的图在上面可进行的操作更多,所以各种用于不同地方的树都出现了,二叉树.三叉树.静态搜索树.AV ...

  9. 【DP_树形DP专题】题单总结

    转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...

  10. 树形dp总结

    转自 http://blog.csdn.net/angon823 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在"树"的数据结构上的动态规划,平时作的动态规划都是线性的 ...

随机推荐

  1. python_24_test

    product_list=[ ('Iphone',5800), ('Mac Pro',9800), ('Bike',800), ('Watch',10600), ('Coffee',31), ('Py ...

  2. Solaris&&QNX® Neutrino®&&OpenVMS&&FreeBSD&&AIX

    原文链接Solaris (读作 /se'laris:/ 或者 /so'le:ris/ 或者 '梭拉瑞斯' )是Sun Microsystems研发的计算机 操作系统.它被认为是UNIX操作系统的衍生版 ...

  3. Dynemic Web Project中使用servlet的 doGet()方法接收来自浏览器客户端发送的add学生信息形成json字符串输出到浏览器并保存到本地磁盘文件

    package com.swift.servlet; import java.io.FileOutputStream;import java.io.IOException;import java.io ...

  4. [未完] term.js 记录遇到的问题

    参考博文:https://www.cnblogs.com/zhenfei-jiang/p/7065038.html 按照网上查找的资料敲了代码 term.on('data', function(dat ...

  5. python笔记-dict字典的方法

    #!/usr/bin/env python #-*- coding:utf-8 -*- #打印0001-9999的数字 for i in range(9999): s = "%04d&quo ...

  6. 最全的PHP函数详解

    usleep() 函数延迟代码执行若干微秒. unpack() 函数从二进制字符串对数据进行解包. uniqid() 函数基于以微秒计的当前时间,生成一个唯一的 ID. time_sleep_unti ...

  7. jquery 省市区联动插件

    使用方式: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  8. day 71 Django基础六之ORM中的锁和事务

    Django基础六之ORM中的锁和事务   本节目录 一 锁 二 事务 三 xxx 四 xxx 五 xxx 六 xxx 七 xxx 八 xxx 一 锁 行级锁 select_for_update(no ...

  9. wireshark_1.6.2 使用笔记

    表示ip1是否有访问ip2,进行抓包

  10. oracle 事务 第一弹

    一.事务概念 概念:在数据库中事务是工作的逻辑单元,一个事务是由一个或多个完成一组的相关行为的SQL语句组成,通过事务机制确保这一组SQL语句所作的操作要么完全成功执行,完成整个工作单元操作,要么一点 ...