spark学习(二)
Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发。
- 本地模式
- Standalone模式
- Mesoes模式
- yarn模式
1.下载安装
http://spark.apache.org/downloads.html
这里可以选择下载源码编译,或者下载已经编译好的程序(因为spark是运行在JVM上面,也可以说是跨平台的),这里是直接下载可执行程序。
Chose a package type: Pre-built for Hadoop 2.4 and later 。
解压这个 spark-1.3.0-bin-hadoop2.4.tgz 即可。
PS:你需要安装java运行环境
~/project/spark-1.3.0-bin-hadoop2.4 $java -version
java version "1.8.0_25"
Java(TM) SE Runtime Environment (build 1.8.0_25-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)
2.目录分布
sbin目录是各种启动命令
~/project/spark-1.3.0-bin-hadoop2.4 $tree sbin/
sbin/
├── slaves.sh
├── spark-config.sh
├── spark-daemon.sh
├── spark-daemons.sh
├── start-all.sh
├── start-history-server.sh
├── start-master.sh
├── start-slave.sh
├── start-slaves.sh
├── start-thriftserver.sh
├── stop-all.sh
├── stop-history-server.sh
├── stop-master.sh
├── stop-slaves.sh
└── stop-thriftserver.sh
conf目录是一些配置模板:
~/project/spark-1.3.0-bin-hadoop2.4 $tree conf/
conf/
├── fairscheduler.xml.template
├── log4j.properties.template
├── metrics.properties.template
├── slaves.template
├── spark-defaults.conf.template
└── spark-env.sh.template
3.启动master
~/project/spark-1.3.0-bin-hadoop2.4 $./sbin/start-master.sh
starting org.apache.spark.deploy.master.Master, logging to /Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/sbin/../logs/spark-qpzhang-org.apache.spark.deploy.master.Master-1-qpzhangdeMac-mini.local.out
没有进行任何配置时,采用的都是默认配置,可以看到日志文件的输出:
~/project/spark-1.3.0-bin-hadoop2.4 $cat logs/spark-qpzhang-org.apache.spark.deploy.master.Master-1-qpzhangdeMac-mini.local.out Spark assembly has been built with Hive, including Datanucleus jars on classpath Spark Command: /Library/Java/JavaVirtualMachines/jdk1.8.0_25.jdk/Contents/Home/bin/java -cp :/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/sbin/../conf:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/lib/spark-assembly-1.3.0-hadoop2.4.0.jar:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/lib/datanucleus-api-jdo-3.2.6.jar:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/lib/datanucleus-core-3.2.10.jar:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/lib/datanucleus-rdbms-3.2.9.jar -Dspark.akka.logLifecycleEvents=true -Xms512m -Xmx512m org.apache.spark.deploy.master.Master --ip qpzhangdeMac-mini.local --port 7077 --webui-port 8080 ======================================== Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties 15/03/20 10:08:09 INFO Master: Registered signal handlers for [TERM, HUP, INT] 15/03/20 10:08:10 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 15/03/20 10:08:10 INFO SecurityManager: Changing view acls to: qpzhang 15/03/20 10:08:10 INFO SecurityManager: Changing modify acls to: qpzhang 15/03/20 10:08:10 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(qpzhang); users with modify permissions: Set(qpzhang) 15/03/20 10:08:10 INFO Slf4jLogger: Slf4jLogger started 15/03/20 10:08:10 INFO Remoting: Starting remoting 15/03/20 10:08:10 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077] 15/03/20 10:08:10 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077] 15/03/20 10:08:10 INFO Utils: Successfully started service 'sparkMaster' on port 7077. 15/03/20 10:08:11 INFO Server: jetty-8.y.z-SNAPSHOT 15/03/20 10:08:11 INFO AbstractConnector: Started SelectChannelConnector@qpzhangdeMac-mini.local:6066 15/03/20 10:08:11 INFO Utils: Successfully started service on port 6066. 15/03/20 10:08:11 INFO StandaloneRestServer: Started REST server for submitting applications on port 6066 15/03/20 10:08:11 INFO Master: Starting Spark master at spark://qpzhangdeMac-mini.local:7077 15/03/20 10:08:11 INFO Master: Running Spark version 1.3.0 15/03/20 10:08:11 INFO Server: jetty-8.y.z-SNAPSHOT 15/03/20 10:08:11 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:8080 15/03/20 10:08:11 INFO Utils: Successfully started service 'MasterUI' on port 8080. 15/03/20 10:08:11 INFO MasterWebUI: Started MasterWebUI at http://10.60.215.41:8080 15/03/20 10:08:11 INFO Master: I have been elected leader! New state: ALIVE
可以看到输出的几条重要的信息,service端口6066,spark端口 7077,ui端口8080等,并且当前node通过选举,确认自己为leader。
这个时候,我们可以通过 http://localhost:8080/ 来查看到当前master的总体状态。
4.附加一个worker到master
~/project/spark-1.3.0-bin-hadoop2.4 $./bin/spark-class org.apache.spark.deploy.worker.Worker spark://qpzhangdeMac-mini.local:7077
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
15/03/20 10:33:49 INFO Worker: Registered signal handlers for [TERM, HUP, INT]
15/03/20 10:33:49 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/03/20 10:33:49 INFO SecurityManager: Changing view acls to: qpzhang
15/03/20 10:33:49 INFO SecurityManager: Changing modify acls to: qpzhang
15/03/20 10:33:49 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(qpzhang); users with modify permissions: Set(qpzhang)
15/03/20 10:33:50 INFO Slf4jLogger: Slf4jLogger started
15/03/20 10:33:50 INFO Remoting: Starting remoting
15/03/20 10:33:50 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkWorker@10.60.215.41:60994]
15/03/20 10:33:50 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkWorker@10.60.215.41:60994]
15/03/20 10:33:50 INFO Utils: Successfully started service 'sparkWorker' on port 60994.
15/03/20 10:33:50 INFO Worker: Starting Spark worker 10.60.215.41:60994 with 8 cores, 7.0 GB RAM
15/03/20 10:33:50 INFO Worker: Running Spark version 1.3.0
15/03/20 10:33:50 INFO Worker: Spark home: /Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4
15/03/20 10:33:50 INFO Server: jetty-8.y.z-SNAPSHOT
15/03/20 10:33:50 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:8081
15/03/20 10:33:50 INFO Utils: Successfully started service 'WorkerUI' on port 8081.
15/03/20 10:33:50 INFO WorkerWebUI: Started WorkerWebUI at http://10.60.215.41:8081
15/03/20 10:33:50 INFO Worker: Connecting to master akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077/user/Master...
15/03/20 10:33:50 INFO Worker: Successfully registered with master spark://qpzhangdeMac-mini.local:7077
从日志输出可以看到, worker自己在60994端口工作,然后为自己也起了一个UI,端口是8081,可以通过 http://10.60.215.41:8081查看worker的工作状态,(不得不说,选择的分布式少不了UI监控状态这一块儿了)。
5.启动spark shell终端:
~/project/spark-1.3.0-bin-hadoop2.4 $./bin/spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
15/03/20 10:43:39 INFO SecurityManager: Changing view acls to: qpzhang
15/03/20 10:43:39 INFO SecurityManager: Changing modify acls to: qpzhang
15/03/20 10:43:39 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(qpzhang); users with modify permissions: Set(qpzhang)
15/03/20 10:43:39 INFO HttpServer: Starting HTTP Server
15/03/20 10:43:39 INFO Server: jetty-8.y.z-SNAPSHOT
15/03/20 10:43:39 INFO AbstractConnector: Started SocketConnector@0.0.0.0:61644
15/03/20 10:43:39 INFO Utils: Successfully started service 'HTTP class server' on port 61644.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 1.3.0
/_/ Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_25)
Type in expressions to have them evaluated.
Type :help for more information.
15/03/20 10:43:43 INFO SparkContext: Running Spark version 1.3.0
15/03/20 10:43:43 INFO SecurityManager: Changing view acls to: qpzhang
15/03/20 10:43:43 INFO SecurityManager: Changing modify acls to: qpzhang
15/03/20 10:43:43 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(qpzhang); users with modify permissions: Set(qpzhang)
15/03/20 10:43:43 INFO Slf4jLogger: Slf4jLogger started
15/03/20 10:43:43 INFO Remoting: Starting remoting
15/03/20 10:43:43 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@10.60.215.41:61645]
15/03/20 10:43:43 INFO Utils: Successfully started service 'sparkDriver' on port 61645.
15/03/20 10:43:43 INFO SparkEnv: Registering MapOutputTracker
15/03/20 10:43:44 INFO SparkEnv: Registering BlockManagerMaster
15/03/20 10:43:44 INFO DiskBlockManager: Created local directory at /var/folders/2l/195zcc1n0sn2wjfjwf9hl9d80000gn/T/spark-5349b1ce-bd10-4f44-9571-da660c1a02a3/blockmgr-a519687e-0cc3-45e4-839a-f93ac8f1397b
15/03/20 10:43:44 INFO MemoryStore: MemoryStore started with capacity 265.1 MB
15/03/20 10:43:44 INFO HttpFileServer: HTTP File server directory is /var/folders/2l/195zcc1n0sn2wjfjwf9hl9d80000gn/T/spark-29d81b59-ec6a-4595-b2fb-81bf6b1d3b10/httpd-c572e4a5-ff85-44c9-a21f-71fb34b831e1
15/03/20 10:43:44 INFO HttpServer: Starting HTTP Server
15/03/20 10:43:44 INFO Server: jetty-8.y.z-SNAPSHOT
15/03/20 10:43:44 INFO AbstractConnector: Started SocketConnector@0.0.0.0:61646
15/03/20 10:43:44 INFO Utils: Successfully started service 'HTTP file server' on port 61646.
15/03/20 10:43:44 INFO SparkEnv: Registering OutputCommitCoordinator
15/03/20 10:43:44 INFO Server: jetty-8.y.z-SNAPSHOT
15/03/20 10:43:44 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
15/03/20 10:43:44 INFO Utils: Successfully started service 'SparkUI' on port 4040.
15/03/20 10:43:44 INFO SparkUI: Started SparkUI at http://10.60.215.41:4040
15/03/20 10:43:44 INFO Executor: Starting executor ID <driver> on host localhost
15/03/20 10:43:44 INFO Executor: Using REPL class URI: http://10.60.215.41:61644
15/03/20 10:43:44 INFO AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@10.60.215.41:61645/user/HeartbeatReceiver
15/03/20 10:43:44 INFO NettyBlockTransferService: Server created on 61651
15/03/20 10:43:44 INFO BlockManagerMaster: Trying to register BlockManager
15/03/20 10:43:44 INFO BlockManagerMasterActor: Registering block manager localhost:61651 with 265.1 MB RAM, BlockManagerId(<driver>, localhost, 61651)
15/03/20 10:43:44 INFO BlockManagerMaster: Registered BlockManager
15/03/20 10:43:44 INFO SparkILoop: Created spark context..
Spark context available as sc.
15/03/20 10:43:45 INFO SparkILoop: Created sql context (with Hive support)..
SQL context available as sqlContext. scala>
从输出可以看到,又是一堆端口(各种service进行通信,没办法),包含UI, driver等等。warning日志告诉你没有进行config,采用默认。如何进行config,后面再说,先用默认的跑起来玩玩。
6.通过shell下达命令
下面我们来执行几个官网上面overview中的几个命令来玩玩。
scala> val textFile = sc.textFile("README.md") //加载数据文件,可以是本地路径,也是是HDFS路径或者其它
15/03/20 10:55:20 INFO MemoryStore: ensureFreeSpace(159118) called with curMem=0, maxMem=278019440
15/03/20 10:55:20 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 155.4 KB, free 265.0 MB)
15/03/20 10:55:20 INFO MemoryStore: ensureFreeSpace(22692) called with curMem=159118, maxMem=278019440
15/03/20 10:55:20 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 22.2 KB, free 265.0 MB)
15/03/20 10:55:20 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:61651 (size: 22.2 KB, free: 265.1 MB)
15/03/20 10:55:20 INFO BlockManagerMaster: Updated info of block broadcast_0_piece0
15/03/20 10:55:20 INFO SparkContext: Created broadcast 0 from textFile at <console>:21
textFile: org.apache.spark.rdd.RDD[String] = README.md MapPartitionsRDD[1] at textFile at <console>:21 scala> textFile.count() //列出文件行数
15/03/20 10:56:38 INFO FileInputFormat: Total input paths to process : 1
15/03/20 10:56:38 INFO SparkContext: Starting job: count at <console>:24
15/03/20 10:56:38 INFO DAGScheduler: Got job 0 (count at <console>:24) with 2 output partitions (allowLocal=false)
15/03/20 10:56:38 INFO DAGScheduler: Final stage: Stage 0(count at <console>:24)
15/03/20 10:56:38 INFO DAGScheduler: Parents of final stage: List()
15/03/20 10:56:38 INFO DAGScheduler: Missing parents: List()
15/03/20 10:56:38 INFO DAGScheduler: Submitting Stage 0 (README.md MapPartitionsRDD[1] at textFile at <console>:21), which has no missing parents
15/03/20 10:56:38 INFO MemoryStore: ensureFreeSpace(2632) called with curMem=181810, maxMem=278019440
15/03/20 10:56:38 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 2.6 KB, free 265.0 MB)
15/03/20 10:56:38 INFO MemoryStore: ensureFreeSpace(1923) called with curMem=184442, maxMem=278019440
15/03/20 10:56:38 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 1923.0 B, free 265.0 MB)
15/03/20 10:56:38 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:61651 (size: 1923.0 B, free: 265.1 MB)
15/03/20 10:56:38 INFO BlockManagerMaster: Updated info of block broadcast_1_piece0
15/03/20 10:56:38 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:839
15/03/20 10:56:38 INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (README.md MapPartitionsRDD[1] at textFile at <console>:21)
15/03/20 10:56:38 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
15/03/20 10:56:38 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, PROCESS_LOCAL, 1327 bytes)
15/03/20 10:56:38 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, PROCESS_LOCAL, 1327 bytes)
15/03/20 10:56:38 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
15/03/20 10:56:38 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
15/03/20 10:56:38 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:0+1814
15/03/20 10:56:38 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:1814+1815
15/03/20 10:56:38 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
15/03/20 10:56:38 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
15/03/20 10:56:38 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
15/03/20 10:56:38 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
15/03/20 10:56:38 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
15/03/20 10:56:38 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 1830 bytes result sent to driver
15/03/20 10:56:38 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 1830 bytes result sent to driver
15/03/20 10:56:38 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 120 ms on localhost (1/2)
15/03/20 10:56:38 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 111 ms on localhost (2/2)
15/03/20 10:56:38 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
15/03/20 10:56:38 INFO DAGScheduler: Stage 0 (count at <console>:24) finished in 0.134 s
15/03/20 10:56:38 INFO DAGScheduler: Job 0 finished: count at <console>:24, took 0.254626 s
res0: Long = 98 scala> textFile.first() //输出第一个item, 也就是第一行内容
15/03/20 10:59:31 INFO SparkContext: Starting job: first at <console>:24
15/03/20 10:59:31 INFO DAGScheduler: Got job 1 (first at <console>:24) with 1 output partitions (allowLocal=true)
15/03/20 10:59:31 INFO DAGScheduler: Final stage: Stage 1(first at <console>:24)
15/03/20 10:59:31 INFO DAGScheduler: Parents of final stage: List()
15/03/20 10:59:31 INFO DAGScheduler: Missing parents: List()
15/03/20 10:59:31 INFO DAGScheduler: Submitting Stage 1 (README.md MapPartitionsRDD[1] at textFile at <console>:21), which has no missing parents
15/03/20 10:59:31 INFO MemoryStore: ensureFreeSpace(2656) called with curMem=186365, maxMem=278019440
15/03/20 10:59:31 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 2.6 KB, free 265.0 MB)
15/03/20 10:59:31 INFO MemoryStore: ensureFreeSpace(1945) called with curMem=189021, maxMem=278019440
15/03/20 10:59:31 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 1945.0 B, free 265.0 MB)
15/03/20 10:59:31 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on localhost:61651 (size: 1945.0 B, free: 265.1 MB)
15/03/20 10:59:31 INFO BlockManagerMaster: Updated info of block broadcast_2_piece0
15/03/20 10:59:31 INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:839
15/03/20 10:59:31 INFO DAGScheduler: Submitting 1 missing tasks from Stage 1 (README.md MapPartitionsRDD[1] at textFile at <console>:21)
15/03/20 10:59:31 INFO TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
15/03/20 10:59:31 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 2, localhost, PROCESS_LOCAL, 1327 bytes)
15/03/20 10:59:31 INFO Executor: Running task 0.0 in stage 1.0 (TID 2)
15/03/20 10:59:31 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:0+1814
15/03/20 10:59:31 INFO Executor: Finished task 0.0 in stage 1.0 (TID 2). 1809 bytes result sent to driver
15/03/20 10:59:31 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 8 ms on localhost (1/1)
15/03/20 10:59:31 INFO DAGScheduler: Stage 1 (first at <console>:24) finished in 0.009 s
15/03/20 10:59:31 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
15/03/20 10:59:31 INFO DAGScheduler: Job 1 finished: first at <console>:24, took 0.016292 s
res1: String = # Apache Spark scala> val linesWithSpark = textFile.filter(line => line.contains("Spark")) //定义一个filter, 这里定义的是包含Spark关键词的filter
linesWithSpark: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at filter at <console>:23 scala> linesWithSpark.count() //输出filter中的结果数
15/03/20 11:00:28 INFO SparkContext: Starting job: count at <console>:26
15/03/20 11:00:28 INFO DAGScheduler: Got job 2 (count at <console>:26) with 2 output partitions (allowLocal=false)
15/03/20 11:00:28 INFO DAGScheduler: Final stage: Stage 2(count at <console>:26)
15/03/20 11:00:28 INFO DAGScheduler: Parents of final stage: List()
15/03/20 11:00:28 INFO DAGScheduler: Missing parents: List()
15/03/20 11:00:28 INFO DAGScheduler: Submitting Stage 2 (MapPartitionsRDD[2] at filter at <console>:23), which has no missing parents
15/03/20 11:00:28 INFO MemoryStore: ensureFreeSpace(2840) called with curMem=190966, maxMem=278019440
15/03/20 11:00:28 INFO MemoryStore: Block broadcast_3 stored as values in memory (estimated size 2.8 KB, free 265.0 MB)
15/03/20 11:00:28 INFO MemoryStore: ensureFreeSpace(2029) called with curMem=193806, maxMem=278019440
15/03/20 11:00:28 INFO MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 2029.0 B, free 265.0 MB)
15/03/20 11:00:28 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on localhost:61651 (size: 2029.0 B, free: 265.1 MB)
15/03/20 11:00:28 INFO BlockManagerMaster: Updated info of block broadcast_3_piece0
15/03/20 11:00:28 INFO SparkContext: Created broadcast 3 from broadcast at DAGScheduler.scala:839
15/03/20 11:00:28 INFO DAGScheduler: Submitting 2 missing tasks from Stage 2 (MapPartitionsRDD[2] at filter at <console>:23)
15/03/20 11:00:28 INFO TaskSchedulerImpl: Adding task set 2.0 with 2 tasks
15/03/20 11:00:28 INFO TaskSetManager: Starting task 0.0 in stage 2.0 (TID 3, localhost, PROCESS_LOCAL, 1327 bytes)
15/03/20 11:00:28 INFO TaskSetManager: Starting task 1.0 in stage 2.0 (TID 4, localhost, PROCESS_LOCAL, 1327 bytes)
15/03/20 11:00:28 INFO Executor: Running task 0.0 in stage 2.0 (TID 3)
15/03/20 11:00:28 INFO Executor: Running task 1.0 in stage 2.0 (TID 4)
15/03/20 11:00:28 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:1814+1815
15/03/20 11:00:28 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:0+1814
15/03/20 11:00:28 INFO Executor: Finished task 1.0 in stage 2.0 (TID 4). 1830 bytes result sent to driver
15/03/20 11:00:28 INFO Executor: Finished task 0.0 in stage 2.0 (TID 3). 1830 bytes result sent to driver
15/03/20 11:00:28 INFO TaskSetManager: Finished task 1.0 in stage 2.0 (TID 4) in 9 ms on localhost (1/2)
15/03/20 11:00:28 INFO TaskSetManager: Finished task 0.0 in stage 2.0 (TID 3) in 11 ms on localhost (2/2)
15/03/20 11:00:28 INFO DAGScheduler: Stage 2 (count at <console>:26) finished in 0.011 s
15/03/20 11:00:28 INFO TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool
15/03/20 11:00:28 INFO DAGScheduler: Job 2 finished: count at <console>:26, took 0.019407 s
res2: Long = 19 //可以看到有19行包含 Spark关键词 scala> linesWithSpark.first() //打印第一行数据
15/03/20 11:00:35 INFO SparkContext: Starting job: first at <console>:26
15/03/20 11:00:35 INFO DAGScheduler: Got job 3 (first at <console>:26) with 1 output partitions (allowLocal=true)
15/03/20 11:00:35 INFO DAGScheduler: Final stage: Stage 3(first at <console>:26)
15/03/20 11:00:35 INFO DAGScheduler: Parents of final stage: List()
15/03/20 11:00:35 INFO DAGScheduler: Missing parents: List()
15/03/20 11:00:35 INFO DAGScheduler: Submitting Stage 3 (MapPartitionsRDD[2] at filter at <console>:23), which has no missing parents
15/03/20 11:00:35 INFO MemoryStore: ensureFreeSpace(2864) called with curMem=195835, maxMem=278019440
15/03/20 11:00:35 INFO MemoryStore: Block broadcast_4 stored as values in memory (estimated size 2.8 KB, free 265.0 MB)
15/03/20 11:00:35 INFO MemoryStore: ensureFreeSpace(2048) called with curMem=198699, maxMem=278019440
15/03/20 11:00:35 INFO MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 2.0 KB, free 264.9 MB)
15/03/20 11:00:35 INFO BlockManagerInfo: Added broadcast_4_piece0 in memory on localhost:61651 (size: 2.0 KB, free: 265.1 MB)
15/03/20 11:00:35 INFO BlockManagerMaster: Updated info of block broadcast_4_piece0
15/03/20 11:00:35 INFO SparkContext: Created broadcast 4 from broadcast at DAGScheduler.scala:839
15/03/20 11:00:35 INFO DAGScheduler: Submitting 1 missing tasks from Stage 3 (MapPartitionsRDD[2] at filter at <console>:23)
15/03/20 11:00:35 INFO TaskSchedulerImpl: Adding task set 3.0 with 1 tasks
15/03/20 11:00:35 INFO TaskSetManager: Starting task 0.0 in stage 3.0 (TID 5, localhost, PROCESS_LOCAL, 1327 bytes)
15/03/20 11:00:35 INFO Executor: Running task 0.0 in stage 3.0 (TID 5)
15/03/20 11:00:35 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:0+1814
15/03/20 11:00:35 INFO Executor: Finished task 0.0 in stage 3.0 (TID 5). 1809 bytes result sent to driver
15/03/20 11:00:35 INFO TaskSetManager: Finished task 0.0 in stage 3.0 (TID 5) in 10 ms on localhost (1/1)
15/03/20 11:00:35 INFO DAGScheduler: Stage 3 (first at <console>:26) finished in 0.010 s
15/03/20 11:00:35 INFO TaskSchedulerImpl: Removed TaskSet 3.0, whose tasks have all completed, from pool
15/03/20 11:00:35 INFO DAGScheduler: Job 3 finished: first at <console>:26, took 0.016494 s
res3: String = # Apache Spark
更多命令参考: https://spark.apache.org/docs/latest/quick-start.html
期间,我们可以通过UI看到job列表和状态:
跑起来先,第一步已经完成,那么spark架构是什么样的?运行原理?如何自定义配置?如何扩展到分布式?如何编程实现?我们后面再慢慢研究。
spark学习(二)的更多相关文章
- Spark Standalone Mode 多机启动 -- 分布式计算系统spark学习(二)(更新一键启动slavers)
捣鼓了一下,先来个手动挡吧.自动挡要设置ssh无密码登陆啥的,后面开搞. 一.手动多台机链接master 手动链接master其实上篇已经用过. 这里有两台机器: 10.60.215.41 启动mas ...
- Spark 学习(二)
继续学习spark 认真查看了一下${SPARK_HOME}/bin/pyspark 的脚本,原来开启spark 的python 交互挺简单的. 主要操作 export PYTHONPATH=${SP ...
- spark 学习(二) RDD及共享变量
声明:本文基于spark的programming guide,并融合自己的相关理解整理而成 Spark应用程序总是包括着一个driver program(驱动程序),它运行着用户的main方 ...
- Spark学习笔记之SparkRDD
Spark学习笔记之SparkRDD 一. 基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ① 内存集合和外部存储系统 ② ...
- [转]Spark学习之路 (三)Spark之RDD
Spark学习之路 (三)Spark之RDD https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...
- Spark学习之基于MLlib的机器学习
Spark学习之基于MLlib的机器学习 1. 机器学习算法尝试根据训练数据(training data)使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定. 2. MLlib完成文本分类任 ...
- Spark学习之Spark调优与调试(7)
Spark学习之Spark调优与调试(7) 1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项. 当创建一个SparkContext时就会创建一个SparkConf实例. 2. ...
- spark学习及环境配置
http://dblab.xmu.edu.cn/blog/spark/ 厦大数据库实验室博客 总结.分享.收获 实验室主页 首页 大数据 数据库 数据挖掘 其他 子雨大数据之Spark入门教程 林子 ...
- Spark学习(4)----ScalaTest
一.例子: 1.一个简单例子:https://www.jianshu.com/p/ceabf3437dd7 2.Funsuite例子:https://www.programcreek.com/scal ...
- Spark学习入门(让人看了想吐的话题)
这是个老生常谈的话题,大家是不是看到这个文章标题就快吐了,本来想着手写一些有技术深度的东西,但是看到太多童鞋卡在入门的门槛上,所以还是打算总结一下入门经验.这种标题真的真的在哪里都可以看得到,度娘一搜 ...
随机推荐
- CSS盒模型总结(一)
一.基本概念 盒子模型是css中一个重要的概念,理解了盒子模型才能更好的排版,盒模型的组成:content padding border margin 二.盒模型的分类 盒子模型有两种,分别是 ie ...
- C++系统学习之二:字符串
上一篇文章主要学习的是C++的基本类型,它们是C++语言直接定义的,它们体现了计算机硬件本身具备的能力.而本篇文章将主要学习内置类型之外的标准库所定义的类型,分别是string和vector,此外还将 ...
- ccf_201712-2
题目 问题描述 有n个小朋友围成一圈玩游戏,小朋友从1至n编号,2号小朋友坐在1号小朋友的顺时针方向,3号小朋友坐在2号小朋友的顺时针方向,……,1号小朋友坐在n号小朋友的顺时针方向. 游戏开始,从1 ...
- 哪些 Python 库让你相见恨晚?
知乎用户,A European Swallow. 苇叶.Aran He.jerry等人赞同 补充三个有助于自动化日常工作的: sh:sh 1.08 — sh v1.08 documentation可以 ...
- RN踩坑
使用夜神 使用夜神作为模拟器,这个模拟器启动就会监听62001端口. 开发工具与模拟器的通信都是通过adb.夜神模拟器的安装目录/bin下有一个adb.exe,android sdk tools下也有 ...
- 【java】抽象类继承关系
抽象类: 抽象类不能用来实例化对象,声明抽象类的唯一目的是为了将来对该类进行扩充. 一个类不能同时被 abstract 和 final 修饰.如果一个类包含抽象方法,那么该类一定要声明为抽象类,否则将 ...
- 【git】自动换行转换autocrlf
#####windows git config --global core.autocrlf true #####linux git config --global core.autocrlf inp ...
- Python之路-迭代器 生成器 推导式
迭代器 可迭代对象 遵守可迭代协议的就是可迭代对象,例如:字符串,list dic tuple set都是可迭代对象 或者说,能被for循环的都是可迭代对象 或者说,具有对象.__iter__方法的都 ...
- Verilog学习笔记基本语法篇(三)·········赋值语句(待补充)
在Verilog HDL语言中,信号有两种赋值方式. A)非阻塞赋值(Non-Blocking)方式(如:b<=a;) (1)在语句块中,上面语句所赋值的变量不能立即为下面的语句所用: (2)块 ...
- JAVA面向过程VS面向对象
面向过程 面向过程是一种自顶向下的编程,强调行为过程,可扩展性可维护性差. 优点: 性能比面向对象高,因为类调用时需要实例化,开销比较大,比较消耗资源. 单片机.嵌入式开发.Linux/Unix等一般 ...