• 主成分分析(PCA)

  • 测试

# -*- coding: utf-8 -*-
"""
Created on Thu Aug 31 14:21:51 2017 @author: Administrator
""" import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris data = load_iris()
y = data.target
X = data.data
pca = PCA(n_components=2)
reduced_X = pca.fit_transform(X) red_x, red_y = [], []
blue_x, blue_y = [], []
green_x, green_y = [], [] for i in range(len(reduced_X)):
if y[i] == 0:
red_x.append(reduced_X[i][0])
red_y.append(reduced_X[i][1])
elif y[i] == 1:
blue_x.append(reduced_X[i][0])
blue_y.append(reduced_X[i][1])
else:
green_x.append(reduced_X[i][0])
green_y.append(reduced_X[i][1]) plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(blue_x, blue_y, c='b', marker='D')
plt.scatter(green_x, green_y, c='g', marker='.')
plt.show()
  • 非负矩阵分解(NMF)

  • 测试

# -*- coding: utf-8 -*-
"""
Created on Thu Aug 31 14:24:26 2017 @author: Administrator
""" from numpy.random import RandomState
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn import decomposition n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64) ###############################################################################
# Load faces data
dataset = fetch_olivetti_faces(shuffle=True, random_state=RandomState(0))
faces = dataset.data ###############################################################################
def plot_gallery(title, images, n_col=n_col, n_row=n_row):
plt.figure(figsize=(2. * n_col, 2.26 * n_row))
plt.suptitle(title, size=16) for i, comp in enumerate(images):
plt.subplot(n_row, n_col, i + 1)
vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,
interpolation='nearest', vmin=-vmax, vmax=vmax)
plt.xticks(())
plt.yticks(())
plt.subplots_adjust(0.01, 0.05, 0.99, 0.94, 0.04, 0.) plot_gallery("First centered Olivetti faces", faces[:n_components])
############################################################################### estimators = [
('Eigenfaces - PCA using randomized SVD',
decomposition.PCA(n_components=6,whiten=True)), ('Non-negative components - NMF',
decomposition.NMF(n_components=6, init='nndsvda', tol=5e-3)) # 设置k=6
] ############################################################################### for name, estimator in estimators:
print("Extracting the top %d %s..." % (n_components, name))
print(faces.shape)
estimator.fit(faces)
components_ = estimator.components_
plot_gallery(name, components_[:n_components]) plt.show()
  • 结果

Extracting the top 6 Eigenfaces - PCA using randomized SVD...
(400, 4096)
Extracting the top 6 Non-negative components - NMF...
(400, 4096)

Python机器学习--降维的更多相关文章

  1. Python机器学习:5.6 使用核PCA进行非线性映射

    许多机器学习算法都有一个假设:输入数据要是线性可分的.感知机算法必须针对完全线性可分数据才能收敛.考虑到噪音,Adalien.逻辑斯蒂回归和SVM并不会要求数据完全线性可分. 但是现实生活中有大量的非 ...

  2. Python机器学习中文版

    Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史 使用Python实现感知机算法 基于Iri ...

  3. Python机器学习中文版目录

    建议Ctrl+D保存到收藏夹,方便随时查看 人工智能(AI)学习资料库 Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人 ...

  4. 只需十四步:从零开始掌握 Python 机器学习(附资源)

    分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找 ...

  5. Python机器学习笔记:sklearn库的学习

    网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...

  6. Python机器学习笔记:不得不了解的机器学习面试知识点(1)

    机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...

  7. 七步精通Python机器学习--转载

    作者简介: Matthew Mayo    翻译:王鹏宇 开始.这是最容易令人丧失斗志的两个字.迈出第一步通常最艰难.当可以选择的方向太多时,就更让人两腿发软了. 从哪里开始? 本文旨在通过七个步骤, ...

  8. Python机器学习笔记:不得不了解的机器学习知识点(2)

    之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局 ...

  9. 只需十四步:从零开始掌握Python机器学习(附资源)

    转载:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许 ...

随机推荐

  1. Django 模版语法 三

    使用自定义simple_tag 在 app01 下面创建 templatetags 文件夹,在创建 my_tag.py 文件,内容如下: from django import template fro ...

  2. sklearn 快速入门教程

    1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也 ...

  3. 使用selenium和phantomJS浏览器获取网页内容的小演示

    # 使用selenium和phantomJS浏览器获取网页内容的小演示 # 导入包 from selenium import webdriver # 使用selenium库里的webdriver方法调 ...

  4. LeetCode(99) Recover Binary Search Tree

    题目 Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without chang ...

  5. LeetCode01--回文数

    ''' 判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: ...

  6. ES6(Module模块化)

    模块化 ES6的模块化的基本规则或特点: 1:每一个模块只加载一次, 每一个JS只执行一次, 如果下次再去加载同目录下同文件,直接从内存中读取. 一个模块就是一个单例,或者说就是一个对象: 2:每一个 ...

  7. 关于hadoop学习的思考(一) —— 小的知识点的总结

    一.对于CDH的小总结: CDH:是Cloudera公司在Apache开源项目hadoop的基础上发型的,共有五个版本前两个已不再更新,最经的两个分别是CDH4(基于hadoop2.0.0版本演化而来 ...

  8. Appium自动化-基于java的环境搭建

    引言 自动化测试框架搭建主要分为以下几个方面的下载安装及环境配置: 1.jdk 2. adt 3. appium 4. testng插件 工具链接: https://pan.baidu.com/s/1 ...

  9. 【LeetCode】String Without AAA or BBB(不含 AAA 或 BBB 的字符串)

    这道题是LeetCode里的第984道题. 题目要求: 给定两个整数 A 和 B,返回任意字符串 S,要求满足: S 的长度为 A + B,且正好包含 A 个 'a' 字母与 B 个 'b' 字母: ...

  10. xtu数据结构 H. City Horizon

    H. City Horizon Time Limit: 2000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java cl ...