http://acm.hdu.edu.cn/showproblem.php?pid=4565

首先知道里面那个东西,是肯定有小数的,就是说小数部分是约不走的,(因为b限定了不是一个完全平方数)。

因为(a - 1)^2 < b < (a ^ 2),所以其不是完全平方数,假如是,那么设其为c,则有a - 1 < c < a,这是矛盾的

所以,向上取整这个步骤,是必不可少的了。

那么,我在它后面加上一个< 1的数,同时使得它们结合成为整数,那就相当于帮它取整了。根据二项式定理

(a + sqrt(b)) ^ n + (a - sqrt(b)) ^ n,其中的奇数次幂,都抵消了。所以这个是一个整数,而且(a - sqrt(b)) ^ n也是小于1的。刚好符合我们的要求。

所以Sn = (a + sqrt(b)) ^ n + (a - sqrt(b)) ^ n

现在就是要找Sn和S(n +1)的关系那些。

化简的时候,整体化简,

x = a + sqrt(b)

y = a - sqrt(b)

x + y = 2 * a

x * y = a * a - b

那么Sn = x^n + y^n  = (x + y) * (x^(n - 1) + y^(n - 1)) - (x * y) * (x ^ (n - 2) + y ^ (n - 2))

就是Sn = (x + y) * S(n - 1) - (x * y) * (S(n - 2))

然后矩阵快速幂

过程中要不断取模,防止中途溢出。

跪了。这题真的跪了。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <bitset>
LL a, b, n, m;
const int maxn = ;
struct Matrix {
LL a[maxn][maxn];
int row;
int col;
};
struct Matrix matrix_mul (struct Matrix a, struct Matrix b, int MOD) { //求解矩阵a*b%MOD
struct Matrix c = {}; //这个要多次用到,栈分配问题,maxn不能开太大,
//LL的时候更加是,空间是maxn*maxn的,这样时间用得很多,4和5相差300ms
c.row = a.row; //行等于第一个矩阵的行
c.col = b.col; //列等于第二个矩阵的列
for (int i = ; i <= a.row; i++) { //枚举第一个矩阵的行
for (int j = ; j <= b.col; j++) { //枚举第二个矩阵的列,其实和上面数值一样
for (int k = ; k <= b.row; k++) { //b中的一列中,有“行”个元素 notice
c.a[i][j] += a.a[i][k] * b.a[k][j];
c.a[i][j] %= MOD;
}
c.a[i][j] = (c.a[i][j] + MOD) % MOD; //如果怕出现了负数取模的话。可以这样做
}
}
return c;
}
struct Matrix quick_matrix_pow(struct Matrix ans, struct Matrix base, int n, int MOD) {
//求解a*b^n%MOD
while (n) {
if (n & ) {
ans = matrix_mul(ans, base, MOD);//传数组不能乱传,不满足交换律
}
n >>= ;
base = matrix_mul(base, base, MOD);
}
return ans;
} void work() {
if (n == ) {
cout << * a % m << endl;
return;
}
if (n == ) {
cout << ( * a * a + * b) % m << endl;
return;
}
Matrix ma_a = {};
ma_a.row = , ma_a.col = ;
ma_a.a[][] = * a * a + * b, ma_a.a[][] = * a; Matrix ma_b = {};
ma_b.row = , ma_b.col = ;
ma_b.a[][] = * a, ma_b.a[][] = ;
ma_b.a[][] = -(a * a - b), ma_b.a[][] = ; Matrix ans = quick_matrix_pow(ma_a, ma_b, n - , m);
cout << ans.a[][] << endl;
}
int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
IOS;
while (cin >> a >> b >> n >> m) work();
return ;
}

HDU 4565 So Easy! 数学 + 矩阵 + 整体思路化简的更多相关文章

  1. hdu 4565 So Easy!(矩阵+快速幂)

    题目大意:就是给出a,b,n,m:让你求s(n); 解题思路:因为n很可能很大,所以一步一步的乘肯定会超时,我建议看代码之前,先看一下快速幂和矩阵快速幂,这样看起来就比较容易,这里我直接贴别人的推导, ...

  2. 数学(矩阵乘法):HDU 4565 So Easy!

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. HDU 4565 So Easy!(数学+矩阵快速幂)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the cei ...

  4. 【构造共轭函数+矩阵快速幂】HDU 4565 So Easy! (2013 长沙赛区邀请赛)

    [解题思路] 给一张神图,推理写的灰常明白了,关键是构造共轭函数,这一点实在是要有数学知识的理论基础,推出了递推式,接下来就是矩阵的快速幂了. 神图: 给个大神的链接:构造类斐波那契数列的矩阵快速幂 ...

  5. hdu 4565 So Easy! (共轭构造+矩阵快速幂)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...

  6. HDU 4565 So Easy(矩阵解公式)

    So Easy [题目链接]So Easy [题目类型]矩阵解公式 &题解: 感觉这种类型的题都是一个套路,这题和hdu 2256就几乎是一样的. 所以最后2Xn就是答案 [时间复杂度]\(O ...

  7. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  8. HDU 4565 So Easy!(矩阵)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4565 题意: 题意: #include <iostream>#include <cs ...

  9. HDU 4565 So Easy!(公式化简+矩阵)

    转载:http://www.klogk.com/posts/hdu4565/ 这里写的非常好,看看就知道了啊. 题意很easy.a,b,n都是正整数.求 Sn=⌈(a+b√)n⌉%m,(a−1)2&l ...

随机推荐

  1. java zip压缩优化版 解决压缩后文件一直被占用无法删除

    最近进行zip操作,从网上找到一个处理方法,但是经过试验存在一些bug,主要是文件流的申明存在问题,导致jvm一直占用文件而不释放,特意把自己修改的发出来,已备记录 import java.io.Bu ...

  2. A nonrecursive list compacting algorithm

    A nonrecursive list compacting algorithm Each Erlang process has its own stack and heap which are al ...

  3. Java WebSocket库:https://github.com/TooTallNate/Java-WebSocket

    https://github.com/TooTallNate/Java-WebSocket 以下是简单示例: import com.google.gson.JsonObject; import com ...

  4. 恢复MySQL数据库删除的数据

    在日常运维工作中,对于数据库的备份是至关重要的!数据库对于网站的重要性使得我们对 MySQL 数据库的管理不容有失!然而是人总难免会犯错误,说不定哪天大脑短路了,误操作把数据库给删除了,怎么办? 下面 ...

  5. (C)inline关键字

      背景(C&C++中) 一.inline关键字用来定义一个类的内联函数,引入它的主要原因是用它替代C中表达式形式的宏定义. 表达式形式的宏定义一例:#define ExpressionNam ...

  6. codeforces 459 A. Pashmak and Garden 解题报告

    题目链接:http://codeforces.com/problemset/problem/459/A 题目意思:给出两个点的坐标你,问能否判断是一个正方形,能则输出剩下两点的坐标,不能就输出 -1. ...

  7. spark运行方式及其常用参数

    yarn cluster模式 例行任务一般会采用这种方式运行 指定固定的executor数 作业常用的参数都在其中指定了,后面的运行脚本会省略 spark-submit \ --master yarn ...

  8. 如何使用BMap.Point传递变量、存储数据?

    在开发中使用到了百度地图进行开发,用于展示企业位置.由于数据量庞大,如果使用marker,将会造成界面卡顿,处理慢的问题. 在查看百度地图API示例是发现了海量点这个东西,还别说对于大数量的点加载起来 ...

  9. angularjs 获得当前元素属性

    先用 console.log(this)查看下当前被点击元素的 this 属性,然后可以看见里面有个$index属性,该属性指向的就是DOM元素列表中当前被点击的那个DOM的下标,只需要使用this. ...

  10. python3练习题四

    循环 题目: 答案: #!/usr/bin/env python3 #-*- coding:utf-8 -*- L = ['Bart', 'Lisa', 'Adam'] for i in L: pri ...