http://acm.hdu.edu.cn/showproblem.php?pid=4565

首先知道里面那个东西,是肯定有小数的,就是说小数部分是约不走的,(因为b限定了不是一个完全平方数)。

因为(a - 1)^2 < b < (a ^ 2),所以其不是完全平方数,假如是,那么设其为c,则有a - 1 < c < a,这是矛盾的

所以,向上取整这个步骤,是必不可少的了。

那么,我在它后面加上一个< 1的数,同时使得它们结合成为整数,那就相当于帮它取整了。根据二项式定理

(a + sqrt(b)) ^ n + (a - sqrt(b)) ^ n,其中的奇数次幂,都抵消了。所以这个是一个整数,而且(a - sqrt(b)) ^ n也是小于1的。刚好符合我们的要求。

所以Sn = (a + sqrt(b)) ^ n + (a - sqrt(b)) ^ n

现在就是要找Sn和S(n +1)的关系那些。

化简的时候,整体化简,

x = a + sqrt(b)

y = a - sqrt(b)

x + y = 2 * a

x * y = a * a - b

那么Sn = x^n + y^n  = (x + y) * (x^(n - 1) + y^(n - 1)) - (x * y) * (x ^ (n - 2) + y ^ (n - 2))

就是Sn = (x + y) * S(n - 1) - (x * y) * (S(n - 2))

然后矩阵快速幂

过程中要不断取模,防止中途溢出。

跪了。这题真的跪了。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <bitset>
LL a, b, n, m;
const int maxn = ;
struct Matrix {
LL a[maxn][maxn];
int row;
int col;
};
struct Matrix matrix_mul (struct Matrix a, struct Matrix b, int MOD) { //求解矩阵a*b%MOD
struct Matrix c = {}; //这个要多次用到,栈分配问题,maxn不能开太大,
//LL的时候更加是,空间是maxn*maxn的,这样时间用得很多,4和5相差300ms
c.row = a.row; //行等于第一个矩阵的行
c.col = b.col; //列等于第二个矩阵的列
for (int i = ; i <= a.row; i++) { //枚举第一个矩阵的行
for (int j = ; j <= b.col; j++) { //枚举第二个矩阵的列,其实和上面数值一样
for (int k = ; k <= b.row; k++) { //b中的一列中,有“行”个元素 notice
c.a[i][j] += a.a[i][k] * b.a[k][j];
c.a[i][j] %= MOD;
}
c.a[i][j] = (c.a[i][j] + MOD) % MOD; //如果怕出现了负数取模的话。可以这样做
}
}
return c;
}
struct Matrix quick_matrix_pow(struct Matrix ans, struct Matrix base, int n, int MOD) {
//求解a*b^n%MOD
while (n) {
if (n & ) {
ans = matrix_mul(ans, base, MOD);//传数组不能乱传,不满足交换律
}
n >>= ;
base = matrix_mul(base, base, MOD);
}
return ans;
} void work() {
if (n == ) {
cout << * a % m << endl;
return;
}
if (n == ) {
cout << ( * a * a + * b) % m << endl;
return;
}
Matrix ma_a = {};
ma_a.row = , ma_a.col = ;
ma_a.a[][] = * a * a + * b, ma_a.a[][] = * a; Matrix ma_b = {};
ma_b.row = , ma_b.col = ;
ma_b.a[][] = * a, ma_b.a[][] = ;
ma_b.a[][] = -(a * a - b), ma_b.a[][] = ; Matrix ans = quick_matrix_pow(ma_a, ma_b, n - , m);
cout << ans.a[][] << endl;
}
int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
IOS;
while (cin >> a >> b >> n >> m) work();
return ;
}

HDU 4565 So Easy! 数学 + 矩阵 + 整体思路化简的更多相关文章

  1. hdu 4565 So Easy!(矩阵+快速幂)

    题目大意:就是给出a,b,n,m:让你求s(n); 解题思路:因为n很可能很大,所以一步一步的乘肯定会超时,我建议看代码之前,先看一下快速幂和矩阵快速幂,这样看起来就比较容易,这里我直接贴别人的推导, ...

  2. 数学(矩阵乘法):HDU 4565 So Easy!

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. HDU 4565 So Easy!(数学+矩阵快速幂)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the cei ...

  4. 【构造共轭函数+矩阵快速幂】HDU 4565 So Easy! (2013 长沙赛区邀请赛)

    [解题思路] 给一张神图,推理写的灰常明白了,关键是构造共轭函数,这一点实在是要有数学知识的理论基础,推出了递推式,接下来就是矩阵的快速幂了. 神图: 给个大神的链接:构造类斐波那契数列的矩阵快速幂 ...

  5. hdu 4565 So Easy! (共轭构造+矩阵快速幂)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...

  6. HDU 4565 So Easy(矩阵解公式)

    So Easy [题目链接]So Easy [题目类型]矩阵解公式 &题解: 感觉这种类型的题都是一个套路,这题和hdu 2256就几乎是一样的. 所以最后2Xn就是答案 [时间复杂度]\(O ...

  7. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  8. HDU 4565 So Easy!(矩阵)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4565 题意: 题意: #include <iostream>#include <cs ...

  9. HDU 4565 So Easy!(公式化简+矩阵)

    转载:http://www.klogk.com/posts/hdu4565/ 这里写的非常好,看看就知道了啊. 题意很easy.a,b,n都是正整数.求 Sn=⌈(a+b√)n⌉%m,(a−1)2&l ...

随机推荐

  1. HTML CSS 编码规范

    返璞归真,代码规范也是一门艺术 黄金定律 永远遵循同一套编码规范 -- 可以是这里列出的,也可以是你自己总结的.如果你发现本规范中有任何错误,敬请指正.通过open an issue on GitHu ...

  2. <转载>调制与解调电路详解

    原文链接:http://www.elecfans.com/analog/20120509270848_4.html 调幅和检波电路 广播和无线电通信是利用调制技术把低频声音信号加到高频信号上发射出去的 ...

  3. Perl解析JSON数据精解

    简介:JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它基于JavaScript(Standard ECMA-262 3rd Edition - Dece ...

  4. [SoapUI] Read data from response , use it to update parameter

    import com.eviware.soapui.support.GroovyUtils def groovyUtils = new GroovyUtils( context ) def holde ...

  5. BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP

    BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP Description Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的 ...

  6. macbook pro上安装虚拟机

    第一步:下载MacHunter的app应用商店 第二步:在MacHunter内下载Parallels Desktop虚拟机 第三步:如果在这个商店下载不下来,在网络资源上直接下载Parallels D ...

  7. 分享几篇文章(PDF版)

    后天就要回老家了,除了团团年估计也没有其他好玩的,就琢磨下点经典文章带回去看看. Google一番找到了老赵很早以前的文章: http://www.cnblogs.com/JeffreyZhao/ar ...

  8. 【转】创建和使用ANDROID LIBRARY工程

    原文网址:http://www.cnblogs.com/Greenwood/archive/2011/06/19/2084499.html 摘要: 创建library供多个工程共享代码.资源是非常常见 ...

  9. win7Setx修改环境变量

    SETX.exe (Resource Kit, Windows 7) Set environment variables permanently, SETX can be used to set En ...

  10. backface-visibility

    浏览器支持 只有 Internet Explorer 10+ 和 Firefox 支持 backface-visibility 属性. Opera 15+.Safari 和 Chrome 支持替代的 ...