莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表
一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和。n,m<=1e5,a<=1e9。对2^31取模。
这个a很讨厌就先不理他。首先i行j列的那个数其实是$a_{ij}=\sum_{x|gcd(i,j)} x$,令$s(t)=\sum_{x|t}x$,然后gcd(i,j)是只有1e5的,可以先把s数组预处理出来。s是积性函数所以线性筛可以搞,但复杂度不在这里,直接埃筛也行。
那现在就是看[1,min(n,m)]中每个数作为gcd的s(t)被算了多少次,也就是1<=x<=n,1<=y<=m中有多少(x,y)=t,记这次数叫f(t),那f(t)是经典的可以反演的式子,反演就不写了,最后$f(t)=\sum_{t|d}\mu(\frac{d}{t})\frac{n}{d}\frac{m}{d}$,最后要求的就是$\sum_{t=1}^{min(n,m)}s(t)\sum_{t|d}\mu(\frac{d}{t})\frac{n}{d}\frac{m}{d}$。
然后我就卡住了。这里用个套路二把后面那俩提出来,变成:$\sum_{d=1}^{min(n,m)}\frac{n}{d}\frac{m}{d}\sum_{t|d}s(t)\mu(\frac{d}{t})$,漂亮,后面那东西(记h(d))预处理一下即可,然后就\sqrt n出解。
然而有了a的限制之后,后面那东西就变得飘忽不定了,这时候需要离线,然后所有s(t)排个序,每次询问前把<=当前a的所有s(t)加给对应的h(d),然后查区间和用树状数组即可。这样就可以在$nlog^2 n+q\sqrt n logn$出解了。
然而排序时忘了cmp函数了。 然而过程中忘了取模导致爆longlong了。 然而没考虑到有负数。 然而树状数组忘开longlong了。
然而最后跑得贼慢,其实对2^31取模只需要int自然溢出最后&2147483647即可。
//#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<bitset>
#include<algorithm>
//#include<cmath>
using namespace std; int T,n,m,A;
#define maxn 100011
int miu[maxn],s[maxn],prime[maxn],lp,us[maxn]; bool notprime[maxn];
int snum[maxn];
bool cmp(const int &a,const int &b) {return s[a]<s[b];}
void pre(int n)
{
for (int i=;i<=n;i++)
for (int j=i;j<=n;j+=i)
s[j]+=i;
for (int i=;i<=n;i++) snum[i]=i;
sort(snum+,snum++n,cmp);
miu[]=; lp=;
for (int i=;i<=n;i++)
{
if (!notprime[i]) {prime[++lp]=i; miu[i]=-;}
for (int j=;j<=lp && 1ll*prime[j]*i<=n;j++)
{
notprime[i*prime[j]]=;
if (i%prime[j]) miu[i*prime[j]]=-miu[i];
else {miu[i*prime[j]]=; break;}
}
}
for (int i=;i<=n;i++)
for (int j=i,cnt=;j<=n;j+=i,cnt++)
us[j]+=miu[cnt]*s[i];
} #define LL long long
struct BIT
{
LL a[maxn],n;
BIT() {n=;}
void add(int x,int v) {for (;x<=n;x+=x&-x) a[x]+=v;}
LL query(int x) {LL ans=; for (;x;x-=x&-x) ans+=a[x]; return ans;}
}t; struct Q
{
int n,m,a,id;
bool operator < (const Q &b) const {return a<b.a;}
}q[maxn];
LL ans[maxn]; const int base=;
int main()
{
pre(base);
scanf("%d",&T);
for (int i=;i<=T;i++) scanf("%d%d%d",&q[i].n,&q[i].m,&q[i].a),q[i].id=i;
sort(q+,q++T); int j=;
const LL tmp=1ll<<;
for (int c=;c<=T;c++)
{
while (j<=base && s[snum[j]]<=q[c].a)
{
for (int k=snum[j],cnt=;k<=base;k+=snum[j],cnt++)
t.add(k,s[snum[j]]*miu[cnt]);
j++;
}
LL Ans=;
for (int i=,to=min(q[c].n,q[c].m),last;i<=to;i=last+)
{
last=min(q[c].n/(q[c].n/i),q[c].m/(q[c].m/i));
Ans+=1ll*(q[c].n/i)*(q[c].m/i)*(t.query(last)-t.query(i-))%tmp,
Ans-=Ans>=tmp?tmp:,Ans+=Ans<?tmp:;
}
ans[q[c].id]=Ans;
} for (int c=;c<=T;c++) printf("%lld\n",ans[c]);
return ;
}
莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表的更多相关文章
- bzoj3529: [Sdoi2014]数表 莫比乌斯反演
题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...
- BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2151 Solved: 1080 [Submit][Status ...
- 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...
- 莫比乌斯反演套路一--令t=pd--BZOJ2820: YY的GCD
t<=10000组询问:有多少x,y,满足$x\epsilon [1,n],y\epsilon [1,m],(x,y)为质数$.n,m<=1e7. 首先式子列出来,f(i)--1<= ...
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)
题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...
- BZOJ3529 [Sdoi2014]数表【莫比乌斯反演】
Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...
- [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演
数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...
- BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组
Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)
Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...
随机推荐
- 把sed当作命令解释器使用
[root@sishen ~]# vim script.sed #!/bin/sed -f #交换第一列和第二列 s/\([^,]*\),\([^,]*\),\(.*\).*/\2,\1, \3/g ...
- 使用 Java 发送邮件
在我们的应用程序中有时需要给用户发送邮件,例如激活邮件.通知邮件等等.那么如何使用 Java 来给用户发送邮件呢? 使用 java 代码发送邮件 使用工具类发送邮件 使用Spring进行整合发送邮件 ...
- 前端缓存-IndexedDB
IndexedDB 就是浏览器提供的本地数据库,它可以被网页脚本创建和操作.IndexedDB 允许储存大量数据,提供查找接口,还能建立索引.这些都是 LocalStorage 所不具备的.就数据库类 ...
- 微信小程序组件解读和分析:十一、label标签
label标签组件说明: label标签,与html的label标签基本一样.label 元素不会向用户呈现任何特殊效果.不过,它为鼠标用户改进了可用性.如果您在 label 元素内点击文本,就会触发 ...
- 掌握Spark机器学习库-07.6-线性回归实现房价预测
数据集 house.csv 数据概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.fea ...
- vscode前端开发软件配搭好用的插件
使用方法,可以在官网中搜索需要的插件或者在VsCode的“”扩展“”中搜索需要的插件添加方法使用Ctrl+P, 输入 ext install xxxx ,搜索要安装的插件,点击安装按钮即可(各取所需插 ...
- 核武器代理CC工具V3.42最新版本!
软件说明 !!!有新版本更新,请移步到更新地址:https://www.cnblogs.com/cnhacker/p/10878688.html ########################### ...
- win7电脑桌面壁纸曝光过高影响图标怎么办?亲测实用解决方法
现在用win7系统的人应该还是挺多的吧,虽然说windows家族已经升级到现在的win11了,相信大多数人家用的电脑系统还是win7吧,今天要讲的是一个壁纸曝光度过高的解决办法,虽然还不清楚为什么,但 ...
- Cygwin, MinGW/MSYS, MinGW-W64/MSYS2
1. Cygwin http://www.cygwin.com/ Cygwin is a large collection of GNU and Open Source tools which pro ...
- Java 字符串格式化 String.format() 的使用
常规类型的格式化 String类的format()方法用于创建格式化的字符串以及连接多个字符串对象.熟悉C语言的同学应该记得c语言的sprintf()方法,两者有类似之处.format()方法有两种重 ...