0 索引

  • 1 概述
  • 2 索引扫描排序文件排序简介
  • 3 索引扫描排序执行过程分析
  • 4 文件排序
  • 5 补充说明
  • 6 参考资料

1 概述

MySQL有两种方式可以实现ORDER BY

  • 1.通过索引扫描生成有序的结果
  • 2.使用文件排序(filesort)

围绕着这两种排序方式,我们试着理解一下ORDER BY的执行过程以及回答一些常见的问题。(下文仅讨论InnoDB存储引擎)

2 索引扫描排序和文件排序(filesort)简介

我们知道InnoDB存储引擎以B+树作为索引的底层实现,B+树的叶子节点存储着所有数据页而内部节点不存放数据信息,并且所有叶子节点形成一个(双向)链表
举个例子,假设userinfo表的userid字段上有主键索引,且userid目前的范围在1001~1006之间,则userid的索引B+树如下:(这里只是为了举例,下图忽略了InnoDB数据页默认大小16KB、双向链表,并且假设B+树度数为3、userid顺序插入)

现在我们想按照userid从小到大的顺序取出所有用户信息,执行以下SQL


SELECT *
FROM userinfo
ORDER BY userid;

MySQL会直接遍历上图userid索引的叶子节点链表,不需要进行额外的排序操作。这就是用索引扫描来排序

但如果userid字段上没有任何索引,图1的B+树结构不存在,MySQL就只能先扫表筛选出符合条件的数据,再将筛选结果根据userid排序。这个排序过程就是filesort

下文将详细介绍这两种排序方式。

3 索引扫描排序执行过程分析

介绍索引扫描排序之前,先看看索引的用途
SQL语句中,WHERE子句和ORDER BY子句都可以使用索引:WHERE子句使用索引避免全表扫描,ORDER BY子句使用索引避免filesort(用“避免”可能有些欠妥,某些场景下全表扫描、filesort未必比走索引慢),以提高查询效率。
虽然索引能提高查询效率,但在一条SQL里,对于一张表的查询 一次只能使用一个索引(注:排除发生index merge的可能性),也就是说当WHERE子句与ORDER BY子句要使用的索引不一致时,MySQL只能使用其中一个索引(B+树)。

也就是说,一个既有WHERE又有ORDER BY的SQL中,使用索引有三个可能的场景:

  • 只用于WHERE子句 筛选出满足条件的数据
  • 只用于ORDER BY子句 返回排序后的结果
  • 既用于WHERE又用于ORDER BY,筛选出满足条件的数据并返回排序后的结果

举个例子,我们创建一张order_detail表 记录每一笔充值记录的userid(用户id)、money(充值金额)、create_time(充值时间),主键是自增id:


CREATE TABLE `order_detail` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`userid` int(11) NOT NULL,
`money` float NOT NULL,
`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`id`),
KEY `userid` (`userid`),
KEY `create_time` (`create_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

写脚本插入100w行数据(InnoDB别用COUNT(*)查总行数,会扫全表,这里只是为了演示):


SELECT COUNT(*) FROM order_detail;
+----------+
| COUNT(*) |
+----------+
| 1000000 |
+----------+ SELECT * FROM order_detail LIMIT 5;
+----+--------+-------+---------------------+
| id | userid | money | create_time |
+----+--------+-------+---------------------+
| 1 | 104832 | 3109 | 2013-01-01 07:40:38 |
| 2 | 138455 | 6123 | 2013-01-01 07:40:42 |
| 3 | 109967 | 7925 | 2013-01-01 07:40:46 |
| 4 | 166686 | 4307 | 2013-01-01 07:40:55 |
| 5 | 119837 | 1912 | 2013-01-01 07:40:58 |
+----+--------+-------+---------------------+

现在我们想取出userid=104832用户的所有充值记录,并按照充值时间create_time正序返回。

场景一 索引只用于WHERE子句

写出如下SQL并EXPLAIN一下:


EXPLAIN
SELECT *
FROM order_detail
WHERE userid = 104832
ORDER BY create_time;
+------+-------------+--------------+------+---------------+--------+---------+-------+------+-----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+------+-------------+--------------+------+---------------+--------+---------+-------+------+-----------------------------+
| 1 | SIMPLE | order_detail | ref | userid | userid | 4 | const | 8 | Using where; Using filesort |
+------+-------------+--------------+------+---------------+--------+---------+-------+------+-----------------------------+

key列的值是userid,可以看出这条SQL会使用userid索引用作WHERE子句的条件过滤,而ORDER BY子句无法使用该索引,只能使用filesort来排序。这就是上文的第一个场景,整个执行流程大致如下:

  • 先通过userid索引找到所有满足WHERE条件的主键id(注:从b+树根节点往下找叶子节点,时间复杂度为O(logN))
  • 再根据这些主键id去主键索引(聚簇索引))找到这几行的数据,生成一张临时表(时间复杂度为O(M*logN),M是临时表的行数)
  • 对临时表进行排序(时间复杂度O(M*logM),M是临时表的行数)

由于本例中M的值可以大概参考rows列的值8,非常小,所以整个执行过程只花费0.00 sec

场景二 索引只用于ORDER BY子句

接下来是上文的第二种场景,索引只用于ORDER BY子句,这即是索引扫描排序
我们可以继续使用上文的SQL,通过FORCE INDEX子句强制Optimizer使用ORDER BY子句的索引create_time:


EXPLAIN
SELECT *
FROM order_detail
FORCE INDEX (create_time)
WHERE userid = 104832
ORDER BY create_time;
+------+-------------+--------------+-------+---------------+-------------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+------+-------------+--------------+-------+---------------+-------------+---------+------+--------+-------------+
| 1 | SIMPLE | order_detail | index | NULL | create_time | 4 | NULL | 998056 | Using where |
+------+-------------+--------------+-------+---------------+-------------+---------+------+--------+-------------+

可以看到Extra字段里的Using filesort已经没了,但是扫过的rows大概有998056行(准确的值应该是1000000行,InnoDB这一列只是估值)。这是因为索引用于ORDER BY子句时,会直接遍历该索引的叶子节点链表,而不像第一种场景那样从B+树的根节点出发 往下查找。执行流程如下:

  • create_time索引的第一个叶子节点出发,按顺序扫描所有叶子节点
  • 根据每个叶子节点记录的主键id去主键索引(聚簇索引))找到真实的行数据,判断行数据是否满足WHERE子句的userid条件,若满足,则取出并返回

整个时间复杂度是O(M*logN),M是主键id的总数,N是聚簇索引叶子节点的个数(数据页的个数)
本例中M的值为1000000,所以整个执行过程比第一种场景花了更多时间,同一台机器上耗时1.34 sec

上述两个例子恰好说明了另一个道理:在某些场景下使用filesort比不使用filesort 效率更高

场景三 索引既用于WHERE又用于ORDER BY

第三种情况发生在WHERE子句与ORDER BY子句能使用相同的索引时(如: WHERE userid > xxx ORDER BY userid),这样就能省去第二种情况的回表查询操作了。
因此,如果可能,设计索引时应该尽可能地同时满足这两种任务,这样是最好的。 ----《高性能MySQL》

4 文件排序(filesort)

关于filesort上文其实已经介绍过了一些。
filesort的名字起得很费解,让人误以为它会:将一张非常大的表放入磁盘再进行排序。其实不是这样的,filesort仅仅是排序而已,是否会放入磁盘看情况而定(filesort is not always bad and it does not mean that a file is saved on disk. If the size of the data is small, it is performed in memory.)。以下是《高性能MySQL》中对filesort的介绍:

如果需要排序的数据量小于“排序缓冲区”,MySQL使用内存进行“快速排序”操作。如果内存不够排序,那么MySQL会先将数据分块,可对每个独立的块使用“快速排序”进行排序,再将各个块的排序结果放到磁盘上,然后将各个排好序的块进行“归并排序”,最后返回排序结果。

所以filesort是否会使用磁盘取决于它操作的数据量大小。

总结来说就是,filesort排序方式来划分 分为两种:

  • 1.数据量小时,在内存中快排
  • 2.数据量大时,在内存中分块快排,再在磁盘上将各个块做归并

数据量大的情况下涉及到磁盘io,所以效率会低一些。

根据回表查询的次数,filesort又可以分为两种方式:

  • 1.回表读取两次数据(two-pass):两次传输排序
  • 2.回表读取一次数据(single-pass):单次传输排序

两次传输排序

两次传输排序会进行两次回表操作:第一次回表用于在WHERE子句中筛选出满足条件的rowid以及rowid对应的ORDER BY的列值;第二次回表发生在ORDER BY子句对指定列进行排序之后,通过rowid回表查出SELECT子句需要的字段信息。

举个例子,我们需要从充值记录表筛选出2018年8月11日到12日的所有userid>140000用户的订单的明细,并按照金额从大到小进行排序(下面只是为filesort举例,不是一种好的实现):

```
EXPLAIN
SELECT *
FROM order_detail
WHERE create_time >= '2018-08-11 00:00:00' and create_time < '2018-08-12 00:00:00' and userid > 140000
order by money desc;
+------+-------------+--------------+-------+--------------------+-------------+---------+------+------+-----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+------+-------------+--------------+-------+--------------------+-------------+---------+------+------+-----------------------------+
| 1 | SIMPLE | order_detail | range | userid,create_time | create_time | 4 | NULL | 1 | Using where; Using filesort |
+------+-------------+--------------+-------+--------------------+-------------+---------+------+------+-----------------------------+
```

我们试着分析一下这个SQL的执行过程:

  • 利用create_time索引,对满足WHERE子句create_time >= '2018-08-11 00:00:00' and create_time < '2018-08-12 00:00:00'的rowid进行回表(第一次回表),回表之后可以拿到该rowid对应的userid,若userid满足userid > 140000的条件时,则将该行的rowid,money(ORDER BY的列)放入排序缓冲区
  • 若排序缓冲区能放下所有rowid, money对,则直接在排序缓冲区(内存)进行快排。
  • 若排序缓冲区不能放下所有rowid, money对,则分块快排,将块存入临时文件(磁盘),再对块进行归并排序。
  • 遍历排序后的结果,对每一个rowid按照排序后的顺序进行回表操作(第二次回表),取出SELECT子句需要的所有字段。

熟悉计算机系统的人可以看出,第二次回表会表比第一次回表的效率低得多,因为第一次回表几乎是顺序I/O;而由于rowid是根据money进行排序的,第二次回表会按照rowid乱序去读取行记录,这些行记录在磁盘中的存储是分散的,每读一行 磁盘都可能会产生寻址时延(磁臂移动到指定磁道)+旋转时延(磁盘旋转到指定扇区),这即是随机I/O

所以为了避免第二次回表的随机I/O,MySQL在4.1之后做了一些改进:在第一次回表时就取出此次查询用到的所有列,供后续使用。我们称之为单次传输排序。

单次传输排序(MySQL4.1之后引入)

还是上面那条SQL,我们再看看单次传输排序的执行过程:

  • 利用create_time索引,对满足WHERE子句create_time >= '2018-08-11 00:00:00' and create_time < '2018-08-12 00:00:00'的rowid进行回表(第一次回表),回表之后可以拿到改rowid对应的userid,若userid满足userid > 140000的条件时,则将此次查询用到该行的所有列(包括ORDER BY列)取出作为一个数据元组(tuple),放入排序缓冲区
  • 若排序缓冲区能放下所有tuples,则直接在排序缓冲区(内存)进行快排。
  • 若排序缓冲区不能放下所有tuples,则分块快排,将块存入临时文件(磁盘),再对块进行归并排序。
  • 遍历排序后的每一个tuple,从tuple中取出SELECT子句需要所有字段。

单次传输排序的弊端在于会将所有涉及到的列都放入排序缓冲区,排序缓冲区一次能放下的tuples更少了,进行归并排序的概率增大。列数据量越大,需要的归并路数更多,增加了额外的I/O开销。所以列数据量太大时,单次传输排序的效率可能还不如两次传输排序

当然,列数据量太大的情况不是特别常见,所以MySQL的filesort会尽可能使用单次传输排序,但是为了防止上述情况发生,MySQL做了以下限制:

  • 所有需要的列或ORDER BY的列只要是BLOB或者TEXT类型,则使用两次传输排序
  • 所有需要的列和ORDER BY的列总大小超过max_length_for_sort_data字节,则使用两次传输排序

我们开发者也应该尽可能让filesort使用单次传输排序,不过EXPLAIN不会告诉我们这个信息,所以我们只能肉眼检查各列的大小看看是否会触发上面两个限制 导致两次传输排序的发生。

5 补充说明

如第3小节所述,既然filesort的效率未必比索引扫描排序低,为什么很多人会想避免filesort呢
谷歌一下using filesort,几乎都是"如何避免filesort"相关的内容。:

这是因为通常ORDER BY子句会与LIMIT子句配合,只取出部分行。如果只是为了取出top1的行 却对所有行进行排序,这显然不是一种高效的做法。这种场景下 按顺序取的索引扫描排序可能会比filesort拥有更好性能(当然也有例外)。

Whether the optimizer actually does so depends on whether reading the index is more efficient than a table scan if columns not in the index must also be read.

官方文档告诉我们optimizer会帮我们选择一种高效的ORDER BY方式。
但也不能完全依赖optimizer的判断,这时合理建立索引、引导它使用指定索引可能是更好的选择。

6 参考资料

MySQL 8.0 Reference Manual :: 8.2.1.14 ORDER BY Optimization
《高性能MySQL》
Sergey Petrunia's blog » How MySQL executes ORDER BY
MySQL filesort algorithms - Valinv
MySQL技术内幕:InnoDB存储引擎(第2版)
B+ Tree Visualization
B+ Trees(pdf)
MySQL :: MySQL 8.0 Reference Manual :: 8.8.2 EXPLAIN Output Format
What do Clustered and Non clustered index actually mean? - Stack Overflow

原文地址:https://segmentfault.com/a/1190000015987895

Mysql - ORDER BY详解的更多相关文章

  1. MySQL 联合索引详解

    MySQL 联合索引详解   联合索引又叫复合索引.对于复合索引:Mysql从左到右的使用索引中的字段,一个查询可以只使用索引中的一部份,但只能是最左侧部分.例如索引是key index (a,b,c ...

  2. MySQL关闭过程详解和安全关闭MySQL的方法

    MySQL关闭过程详解和安全关闭MySQL的方法 www.hongkevip.com 时间: -- : 阅读: 整理: 红客VIP 分享到: 红客VIP(http://www.hongkevip.co ...

  3. Mysql加锁过程详解(7)-初步理解MySQL的gap锁

    Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...

  4. MySQL简单查询详解-单表查询

    MySQL简单查询详解-单表查询 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查询的执行路径 一条SQL查询语句的执行过程大致如下图所示: 1>.客户端和服务端通过my ...

  5. MySQL数据库优化详解(收藏)

    MySQL数据库优化详解 mysql表复制 复制表结构+复制表数据mysql> create table t3 like t1;mysql> insert into t3 select * ...

  6. MySQL EXPLAIN 命令详解

    MySQL EXPLAIN 命令详解 MySQL的EXPLAIN命令用于SQL语句的查询执行计划(QEP).这条命令的输出结果能够让我们了解MySQL 优化器是如何执行SQL 语句的.这条命令并没有提 ...

  7. MySQL 执行计划详解

    我们经常使用 MySQL 的执行计划来查看 SQL 语句的执行效率,接下来分析执行计划的各个显示内容. EXPLAIN SELECT * FROM users WHERE id IN (SELECT ...

  8. 【转】Nginx+php-fpm+MySQL分离部署详解

    转:http://www.linuxidc.com/Linux/2015-07/120580.htm Nginx+php-fpm+MySQL分离部署详解 [日期:2015-07-26] 来源:Linu ...

  9. Linux centos7环境下安装MySQL的步骤详解

    Linux centos7环境下安装MySQL的步骤详解 安装MySQL mysql 有两个跟windows不同的地方 1).my.ini 保存到/etc/my.ini 2).用户权限,单独用户执行 ...

随机推荐

  1. 解析java中volatilekeyword

    在java多线程编程中常常volatile,有时候这个keyword和synchronized 或者lock常常有人混淆.详细解析例如以下: 在多线程的环境中会存在成员变量可见性问题: java的每一 ...

  2. coffeescript遍历json对象

    直接给代码: headers = a:"this is a" ,b:"this is b" ,c:"this is c" exheaders ...

  3. ZOJ 2397:Tian Ji -- The Horse Racing

    Tian Ji -- The Horse Racing Time Limit: 5 Seconds      Memory Limit: 32768 KB Here is a famous story ...

  4. CDOJ 1330 柱爷与远古法阵(高斯消元)

    CDOJ 1330 柱爷与远古法阵(高斯消元) 柱爷与远古法阵 Time Limit: 125/125MS (Java/Others)     Memory Limit: 240000/240000K ...

  5. MFC基础学习

    RECT rect = { }; //获取窗口的内部客户区矩形 GetClientRect(&rect); 模态和费模态对话框! 模态对话框只需要包含对话框头文件,定义对话框类,调用DoMod ...

  6. LaTeX 在线编辑器(LaTeX online editors)

    eqneditor:有强大的几乎所有常用的数学符号对应的图标形式,便于快速完成latex公式编辑且易于粘贴拷贝. 此外,更为重要的一点是,随着编辑窗口内公式的编辑,会在页面的底部,自动生成其对应的 h ...

  7. luoguP2939 [USACO09FEB]改造路Revamping Trails

    约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 速公路. ...

  8. ubuntu 16.04 Hbase 安装

    1.解压安装包至路径 /usr/local 1.1.sudo tar -zxf ~/下载/hbase-1.1.2-bin.tar.gz -C /usr/local 2.将解压的文件名hbase-1.1 ...

  9. PCB 使用Nginx让IIS7实现负载均衡

    在PCB行业众多系统中PCB工程系统是主要的数据生产者, 它与外部系统数据交互是最多的,经统计接口数超过100个之多;这么多接口调用与管理起来是混乱的,所以今年年初对工程集成方式改造,将原来的点对点的 ...

  10. Elasticsearch_Lucene基础

    Lucene基本概念 文档(document):索引与搜索的主要载体,它包含一个或多个字段,存放将要写入索引的或将从索引搜索出来的数据. 字段(field):文档的一个片段,它包含字段的名称和字段的内 ...