CDOJ 1220 The Battle of Guandu
The Battle of Guandu
Time Limit: 6000/3000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)
In the year of 200, two generals whose names are Cao Cao and Shao Yuan are fighting in Guandu. The battle of Guandu was a great battle and the two armies were fighting at M different battlefields whose numbers were 1 to M. There were also N villages nearby numbered from 1 to N. Cao Cao could train some warriors from those villages to strengthen his military. For village i, Cao Cao could only call for some number of warriors join the battlefield xi. However, Shao Yuan's power was extremely strong at that time. So in order to protect themselves, village i would also send equal number of warriors to battlefield yi and join the Yuan Shao's Army. If Cao Cao had called for one warrior from village i, he would have to pay ci units of money for the village. There was no need for Cao Cao to pay for the warriors who would join Shao Yuan's army. At the beginning, there were no warriors of both sides in every battlefield.
As one of greatest strategist at that time, Cao Cao was considering how to beat Shao Yuan. As we can image, the battlefields would have different level of importance wi. Some of the battlefields with wi=2 were very important, so Cao Cao had to guarantee that in these battlefields, the number of his warriors was greater than Shao Yuan's. And some of the battlefields with wi=1 were not as important as before, so Cao Cao had to make sure that the number of his warriors was greater or equal to Shao Yuan's. The other battlefields with wi=0 had no importance, so there were no restriction about the number of warriors in those battlefields. Now, given such conditions, could you help Cao Cao find the least number of money he had to pay to win the battlefield?
Input
The first line of the input gives the number of test cases, T(1≤T≤30). T test cases follow.
Each test case begins with two integers N and M(1≤N,M≤105) in one line.
The second line contains N integers separated by blanks. The ith integer xi(1≤xi≤M) means Cao Cao could call for warriors from village i to battlefield xi.
The third line also contains N integers separated by blanks. The ith integer yi(1≤yi≤M) means if Cao Cao called some number of warriors from village i, there would be the same number of warriors join Shao Yuan's army and fight in battlefield yi.
The next line contains N integers separated by blanks. The ith integer ci(0≤ci≤105) means the number of money Cao Cao had to pay for each warrior from this village.
The last line contains M integers separated by blanks. The ith number wi(wi∈{0,1,2}) means the importance level of ith battlefield.
Output
For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the least amount of money that Cao Cao had to pay for all the warriors to win the battle. If he couldn't win, y=−1.
Sample Input
2
2 3
2 3
1 1
1 1
0 1 2
1 1
1
1
1
2 Sample Output
Case #1: 1
Case #2: -1 解题:由于从i村庄给xi买人会导致yi战场上的敌人增加,由于胜负取决于人数,敌人增多,等同于yi战场的敌人数不变,caocao同学在yi战场上的人数减少。
所以可以这样子认为,我们从yi战场调来了人增援xi战场。但是,只能从不重要的0属性战场调来增援,因为这些战场胜负无关紧要,我们要保证能够胜利,所以以这些属性为0的战场为源点,求到必胜战场的最短路的和即可 下面是Q神的解释,非常清晰合理,完美啊
考虑每个战场的净人数(己方人数-对方人数),那么相当于第i个村庄花费c[i]的代价使得y[i]战场净人数-1,x[i]战场净人数+1,相当于转移了1个人过来。建立如下费用流模型,源向重要度为0的战场连容量INF费用0的弧,重要度为2的战场向汇连容量1费用0的弧,对于第i个村庄,战场y[i]向x[i]连容量INF费用c[i]的弧。如果满流,说明每个重要度为2的战场净人数>0,并且每个重要度为1的战场由于出入流平衡,净人数=0,于是能获胜。但是直接跑费用流是会TLE的,考虑每一次增广都是找一条从源到汇最短路,并且每次增广流量限制总为1,连向汇的费用总为0,因此可以从源出发跑一次单源最短路得到每次增广的费用,复杂度O((n+m)log(n+m))。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL INF = ~0ULL>>;
const int maxn = ;
int x[maxn],y[maxn],c[maxn],z[maxn];
struct arc{
int to,next;
LL w;
arc(int x = ,LL y = ,int z = -){
to = x;
w = y;
next = z;
}
}e[];
int head[maxn],tot;
LL d[maxn];
void add(int u,int v,LL w){
e[tot] = arc(v,w,head[u]);
head[u] = tot++;
}
queue<int>q;
bool in[maxn];
int main(){
int kase,N,M,cs = ;
scanf("%d",&kase);
while(kase--){
scanf("%d%d",&N,&M);
for(int i = ; i <= N; ++i)
scanf("%d",x + i);
for(int i = ; i <= N; ++i)
scanf("%d",y + i);
for(int i = ; i <= N; ++i)
scanf("%d",c + i);
for(int i = ; i <= M; ++i)
scanf("%d",z + i);
memset(head,-,sizeof head);
memset(in,false,sizeof in);
while(!q.empty()) q.pop();
tot = ;
for(int i = ; i <= N; ++i)
if(z[x[i]]) add(y[i],x[i],c[i]);
for(int i = ; i <= M; ++i){
if(!z[i]){
d[i] = ;
q.push(i);
in[i] = true;
}else d[i] = INF;
}
while(!q.empty()){
int u = q.front();
q.pop();
in[u] = false;
for(int i = head[u]; ~i; i = e[i].next){
if(d[e[i].to] > d[u] + e[i].w){
d[e[i].to] = d[u] + e[i].w;
if(!in[e[i].to]){
in[e[i].to] = true;
q.push(e[i].to);
}
}
}
}
LL ret = ;
bool flag = true;
for(int i = ; i <= M && flag; ++i){
if(z[i] == ){
if(d[i] == INF) flag = false;
else ret += d[i];
}
}
printf("Case #%d: %lld\n",cs++,flag?ret:-1LL);
}
return ;
}
CDOJ 1220 The Battle of Guandu的更多相关文章
- CDOJ UESTC 1220 The Battle of Guandu
The 2015 China Collegiate Programming Contest 2015第一届中国大学生程序设计竞赛 F题 本质就是求单源最短路!注意会爆int 对于每一个村庄i,其实就是 ...
- 2015南阳CCPC F - The Battle of Guandu 多源多汇最短路
The Battle of Guandu Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 无 Description In the year of 200, t ...
- CDOJ 1217 The Battle of Chibi
The Battle of Chibi Time Limit: 6000/4000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Othe ...
- cdoj 树上战争(Battle on the tree) Label:并查集?
给一棵树,如果树上的某个节点被某个人占据,则它的所有儿子都被占据,lxh和pfz初始时分别站在两个节点上,谁当前所在的点被另一个人占据,他就输了比赛,问谁能获胜. Input 输入包含多组数据 每组第 ...
- hdu 5545 The Battle of Guandu spfa最短路
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5545 题意:有N个村庄, M 个战场: $ 1 <=N,M <= 10^5 $; 其中曹 ...
- CDOJ 889 Battle for Silver
Battle for Silver Time Limit: 2999/999MS (Java/Others) Memory Limit: 65432/65432KB (Java/Others) ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- Codeforces 738D. Sea Battle 模拟
D. Sea Battle time limit per test: 1 second memory limit per test :256 megabytes input: standard inp ...
- 1220 - Mysterious Bacteria--LightOj1220 (gcd)
http://lightoj.com/volume_showproblem.php?problem=1220 题目大意: 给你一个x,求出满足 x=b^p, p最大是几. 分析:x=p1^a1*p2^ ...
随机推荐
- java基本数据类型在栈中怎么存放的?
参考地址:https://www.zhihu.com/question/24747160 问:int a = 3; 首先它会在栈中创建一个变量为a的引用,然后查找有没有字面值为3的地址,没找到,就开辟 ...
- list的一些功能
x = [1,5,2,3,4] 1.列表反转序: 函数法: x.reverse()该方法没有返回值但会对列表进行反向排序. 注意 不能y=x.reverse(),会得到None 如果要的话要y=rev ...
- 关于list,字符串的小记录
1.关于操作list的命令: a.append("hi") 这个可以在list的最后一项加上个这个字符串"hi",a是list的名字. del a[3] 删去l ...
- CF 602 D. Lipshitz Sequence 数学 + 单调栈 + 优化
http://codeforces.com/contest/602/problem/D 这题需要注意到的是,对于三个点(x1, y1)和(x2, y2)和(x3, y3).如果要算出区间[1, 3]的 ...
- P2667 超级质数
https://www.luogu.org/problem/show?pid=2667 题目背景 背景就是描述,描述就是背景...... 题目描述 一个质数如果从个位开始,依次去掉一位数字,两位数字, ...
- c#内存管理,垃圾回收和资源释放
<1>关于虚拟内存的概念 Windows使用一个虚拟寻址系统,该系统把程序可用的内存地址映射到硬件内存中的实际地址上去,这些任务完全由windows后台管理,其实际结果是32位处理机上的每 ...
- PE刷题记
PE 中文翻译 最喜欢做这种很有意思的数学题了虽然数学很垃圾 但是这个网站的提交方式好鬼畜啊qwq 1.Multiples of 3 and 5 直接枚举 2.Even Fibonacci numbe ...
- 不全屏显示、手柄不居中的SlidingDrawer
SlidingDrawer是一个滑动式抽屉,通过点击或拖拽手柄(handle)来显示或隐藏内容(content). 看了很多关于SlidingDrawer的例子,但基本都是全屏显示,并且手柄居中的.我 ...
- Java Web 开发中路径相关问题小结
Java Web开发中路径问题小结 (1) Web开发中路径的几个基本概念 假设在浏览器中访问了如下的页面,如图1所示: 图1 Eclipse中目录结构如图2所示: 图2 那么针对这个站点的几个基本概 ...
- 工作中Git使用笔记
git相关说明. //git 安装$ git config --global user.name "xxx"代码提交时的用户名,与GITLAB注册用户名建议保持一致$ git co ...