细节挺多的。。

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<ctime> using namespace std; typedef long long ll; ll mul(ll a,ll b,ll mod) {
ll ret = 0ll;
a %= mod;
while( b ) {
if ( b & 1ll ) ret = ( ret + a ) % mod, b--;
b >>= 1ll;
a = ( a + a ) % mod;
}
return ret;
} ll qpow(ll a,ll b,ll mod) {
ll ret = 1ll;
a %= mod;
while( b ) {
if ( b & 1ll ) ret = mul(ret,a,mod),b--;
b >>= 1ll;
a = mul(a,a,mod);
}
return ret;
} ll ter[]= {,,,,,,,,,,};
const int TOP=;
bool Miller_Rabin(ll n) {
if ( n==2ll||n==3ll ) return true;
if ( !( n & 1ll ) ) return false;
ll d = n - 1ll;
int s = ;
while( !( d & 1ll ) ) ++s, d>>=1ll;
for(int i=; i<=TOP; i++) {
ll a = ter[i];
if(a>=n) return true;
ll x = qpow(a,d,n);
ll y = 0ll;
for(int j=; j<s; j++) {
y = mul(x,x,n);
if ( 1ll == y && 1ll != x && n-1ll != x ) return false;
x = y;
}
if ( 1ll != y ) return false;
}
return true;
} int main() {
ll x;
while(cin>>x) {
Miller_Rabin(x)?cout<<"YES\n":cout<<"NO\n";
}
return ;
}

[模板] Miller-Rabin 素数测试的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  4. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  5. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  6. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  7. Miller Rabbin素数测试

    步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d% ...

  8. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  9. 与数论的厮守01:素数的测试——Miller Rabin

    看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...

  10. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

随机推荐

  1. 介绍一下Extern “C”,它的作用是什么?

    Extern “C”是由C++提供的一个连接交换指定符号,用于告诉C++这段代码是C函数.这是因为C++编译后库中函数名会变得很长,与C生成的不一致,造成C++不能直接调用C函数,加上extren “ ...

  2. Codeforces645B【树状数组求逆序数】

    题意: 给你1-n的序列,然后有k次机会的操作,每一次你可以选择两个数交换. 求一个最大的逆序数. 思路: 感觉就是最后一个和第一个交换,然后往中间逼近,到最终的序列,用树状数组求一下逆序数. #in ...

  3. Cg(c for graphic)语言的数据类(转)

    抄“GPU Programming And Cg Language Primer 1rd Edition” 中文名“GPU编程与CG语言之阳春白雪下里巴人” 本章将着重介绍Cg语言中预定义的内置(bu ...

  4. kettle系列-我的开源kettle调度、管理平台[kettle-manager]介绍

    kettle管理工具 专门为kettle这款优秀的ETL工具开发的web端调度.管理工具. 新版本 项目简介 kettle作为非常优秀的开源ETL工具得到了非常广泛的使用,一般的使用的都是使用客户端操 ...

  5. bzoj 3771: Triple【生成函数+FFT+容斥原理】

    瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...

  6. bzoj 4044: [Cerc2014] Virus synthesis【回文自动机+dp】

    建回文自动机,注意到一个回文串是可以通过一个长度小于等于这个串长度的一半的回文串添上一些字符然后复制得到的,也就是在自动机上向fa走,相当于treedp 每次都走显然会T,记录一个up,指向祖先中最下 ...

  7. postman接口测试系列: 时间戳和加密

    在使用postman进行接口测试的时候,对于有些接口字段需要时间戳加密,这个时候我们就遇到2个问题,其一是接口中的时间戳如何得到?其二就是对于现在常用的md5加密操作如何在postman中使用代码实现 ...

  8. elasticsearch映射 mapping

    mapping的格式个应用,主要是创建索引(数据库)的时候指明type 的field类型,然后elasticsearch可以自动解析

  9. SecureCRT的配色方法

    配色后效果如下: 下面开始配色 1.首先配置成默认模式 2.终端(Terminal)==>仿真(Emulation) 按图中标注进行勾选,勾选完毕点击确认 2.选项(Options)==> ...

  10. 152 Maximum Product Subarray 乘积最大子序列

    找出一个序列中乘积最大的连续子序列(该序列至少包含一个数).例如, 给定序列 [2,3,-2,4],其中乘积最大的子序列为 [2,3] 其乘积为 6.详见:https://leetcode.com/p ...