细节挺多的。。

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<ctime> using namespace std; typedef long long ll; ll mul(ll a,ll b,ll mod) {
ll ret = 0ll;
a %= mod;
while( b ) {
if ( b & 1ll ) ret = ( ret + a ) % mod, b--;
b >>= 1ll;
a = ( a + a ) % mod;
}
return ret;
} ll qpow(ll a,ll b,ll mod) {
ll ret = 1ll;
a %= mod;
while( b ) {
if ( b & 1ll ) ret = mul(ret,a,mod),b--;
b >>= 1ll;
a = mul(a,a,mod);
}
return ret;
} ll ter[]= {,,,,,,,,,,};
const int TOP=;
bool Miller_Rabin(ll n) {
if ( n==2ll||n==3ll ) return true;
if ( !( n & 1ll ) ) return false;
ll d = n - 1ll;
int s = ;
while( !( d & 1ll ) ) ++s, d>>=1ll;
for(int i=; i<=TOP; i++) {
ll a = ter[i];
if(a>=n) return true;
ll x = qpow(a,d,n);
ll y = 0ll;
for(int j=; j<s; j++) {
y = mul(x,x,n);
if ( 1ll == y && 1ll != x && n-1ll != x ) return false;
x = y;
}
if ( 1ll != y ) return false;
}
return true;
} int main() {
ll x;
while(cin>>x) {
Miller_Rabin(x)?cout<<"YES\n":cout<<"NO\n";
}
return ;
}

[模板] Miller-Rabin 素数测试的更多相关文章

  1. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  2. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  4. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  5. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  6. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  7. Miller Rabbin素数测试

    步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d% ...

  8. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  9. 与数论的厮守01:素数的测试——Miller Rabin

    看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...

  10. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

随机推荐

  1. bzoj 2555: SubString【后缀自动机+LCT】

    一直WA--找了半天错的发现居然是解密那里的mask其实是不能动的--传进去的会变,但是真实的那个不会变-- 然后就是后缀自动机,用LCT维护parent树了--注意不能makeroot,因为自动机的 ...

  2. tpframe免费开源框架又一重大更新

    tpframe在为Pc站.app接口.微信mobile站各种功能完善的基础上,又更新了一项重新的更新突破,以后你用tpframe开发网站,不须要在写那么多繁琐的依赖程序了,现在只须要写你关注的程序模块 ...

  3. SpringMVC + ajax

    1.ajax 返回汉字乱码 解决方法: http://blog.sina.com.cn/s/blog_5f39177b0101it7h.html //方案一 response.setCharacter ...

  4. Hdu 1358 Period (KMP 求最小循环节)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1358 题目描述: 给出一个字符串S,输出S的前缀能表达成Ak的所有情况,每种情况输出前缀的结束位置和 ...

  5. dubbo中Hessian方法重载问题处理

    dubbo中Hessian方法重载,报出如下错误信息: 十一月 , :: 下午 org.apache.catalina.core.StandardWrapperValve invoke 严重: Ser ...

  6. (转)深入理解Java对象的创建过程

    参考来源:http://blog.csdn.net/justloveyou_/article/details/72466416 摘要: 在Java中,一个对象在可以被使用之前必须要被正确地初始化,这一 ...

  7. bash 变量传递方法

    ###1.sh    ##(该sh 目的是 将变量env传入env.sh, 同时让env.sh在当前事物生效,最后执行env.sh 定义的变量envs) export ENV=prepareecho ...

  8. Unity项目学习笔记

    1.TCP和IP IP:主要作用是在复杂的网络环境中将数据包发送给的最终的目标地址. 端口号:系统会分给系统端口号  一般知名的端口号在0-1023之间,而我们经常使用的自定义/动态分配的端口号则一般 ...

  9. Asp.Net MVC中捕捉错误路由并设置默认Not Found页面。

    在Global中写一个Application_Error捕捉错误路由并重定向到Not Found页面.这里是全局性抓取错误路由,此处还可以写由错误路由导致访问失败的日志记录. protected vo ...

  10. webfrom ASP开发基础跟模式

    ASP.NET - .net开发网站应用程序的技术总称 ASP WebForm           MVC   是ASP.NET的两个技术方法 WebForm类似于WinForm,可视化操作 MVC类 ...