题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3240

n 和 m 太过巨大,不难想到应该用费马小定理什么的来缩小范围;

总之就是推式子啦,看博客:https://blog.csdn.net/jiangshibiao/article/details/24594825

还有:https://www.cnblogs.com/iiyiyi/p/5617598.html

其实也蛮好推的,也挺好写,但我调了很久很久啊...

要十分注意取 mod 时候加括号的艺术...

还要注意指数里的 n 或 m 取的是 mod-1 的模,就是费马小定理。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const maxl=1e6+;
ll a,b,c,d,mod=1e9+,A,B,tmp;
char nn[maxl],mm[maxl];
struct N{ll ord,uni;}n,m;
void get()
{
int l=strlen(nn);
// for(int i=l-1;i>=0;i--)//傻了
for(int i=;i<l;i++)
{
n.ord=(n.ord*%mod+nn[i]-'')%mod;//a=1
n.uni=(n.uni*%(mod-)+nn[i]-'')%(mod-);//a!=1
}
l=strlen(mm);
// for(int i=l-1;i>=0;i--)
for(int i=;i<l;i++)
{
m.ord=(m.ord*%mod+mm[i]-'')%mod;//a=1
m.uni=(m.uni*%(mod-)+mm[i]-'')%(mod-);//a!=1
}
}
ll pw(ll a,ll b)
{
ll ret=;
for(;b;b>>=1ll,(a*=a)%=mod)
if(b&) (ret*=a)%=mod;
return ret;
}
ll ni(ll x){return pw(x,mod-);}
int main()
{
scanf("%s%s",&nn,&mm);
scanf("%lld%lld%lld%lld",&a,&b,&c,&d);
get();
if(a==)
{
B=(((c*b)%mod*(m.ord-))%mod+d)%mod;
if(c==)tmp=(+n.ord*B)%mod;
else tmp=(pw(c,n.uni)+((B*(pw(c,n.uni)-)%mod)*ni(c-))%mod)%mod;//注意指数部分是uni而非ord!!!
}
else
{
A=(pw(a,m.uni-)*c)%mod;
B=(((((pw(a,m.uni-)-)*ni(a-))%mod*c)%mod*b)%mod+d)%mod;
tmp=(pw(A,n.uni)+(((pw(A,n.uni)-)*ni(A-))%mod*B)%mod)%mod;
}
printf("%lld",((tmp-d)*ni(c)%mod+mod)%mod);//+mod %mod
return ;
}

bzoj3240 [Noi2013]矩阵游戏——费马小定理+推式子的更多相关文章

  1. BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec   Memory Limit: 256 MB Submit: 123   Solved: 73 [ Submit][ St ...

  2. BZOJ 3240 [Noi2013]矩阵游戏 ——费马小定理 快速幂

    发现是一个快速幂,然而过不去. 怎么办呢? 1.十进制快速幂,可以用来练习卡时. 2.费马小定理,如果需要乘方的地方,可以先%(p-1)再计算,其他地方需要%p,所以需要保存两个数. 然后就是分类讨论 ...

  3. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  4. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  5. HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂

    MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i )   ( i>=3) mod 1000000007 是质数 , 依据费马小定理  a^phi( p ) = 1 ( ...

  6. HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)

    M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  7. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  8. HDU 5667 Sequence 矩阵快速幂+费马小定理

    题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...

  9. [HDOJ5667]Sequence(矩阵快速幂,费马小定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5667 费马小定理: 假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p). 即 ...

随机推荐

  1. java虚拟机(二)--类加载机制和双亲委派模型

    一.类的生命周期 加载(Loading).验证(Verification).准备(Preparation).解析(Resolution).初始化(Initialization).使用(Using).卸 ...

  2. 基础:VS快捷键

    VS.net中快捷键收缩和展开代码段 i. Ctrl-M-O   折叠所有方法 ii. Ctrl-M-P   展开所有方法并停止大纲显示(不可以再折叠了) iii. Ctrl-M-M   折叠或展开当 ...

  3. 第二节:SQLServer导出-重置sa密码-常用sql语句

    1.SQLServer导出: 点击要导出数据库----->右键(任务)----->生成脚本----->下一步----->下一步(高级)要编写脚本的数据类型---选择架构和数据 ...

  4. SAS,SATA普及文档

    目前所能见到的硬盘接口类型主要有IDE.SATA.SCSI.SAS.FC等等. IDE是俗称的并口,SATA是俗称的串口,这两种硬盘是个人电脑和低端服务器常见的硬盘.SCSI是"小型计算机系 ...

  5. 洛谷——P3871 [TJOI2010]中位数

    P3871 [TJOI2010]中位数 一眼秒掉,这不是splay水题吗,套模板 #include<bits/stdc++.h> #define IL inline #define N 1 ...

  6. 洛谷——P1594 护卫队

    P1594 护卫队 题目描述 护卫车队在一条单行的街道前排成一队,前面河上是一座单行的桥.因为街道是一条单行道,所以任何车辆都不能超车.桥能承受一个给定的最大承载量.为了控制桥上的交通,桥两边各站一个 ...

  7. Django DTL模板语法中的循环的笔记

    for...in...笔记: for...in...标签: for...in...类似于Python中的for...in....可以遍历列表.元组.字符串.字典等一切可以遍历的对象.示例代码如下: { ...

  8. sql杂记:一些坑和数据库恢复

    这是一篇纯粹的乱七八糟的笔记...(勿喷)主要记录一下初入SQL坑的杂七杂八的注意事项. 一.先补充下事务的写法: start transaction;#开始事务 --各种事务... commit;# ...

  9. 3.1.1 简单的 grep

        grep 最简单的用法就是使用固定字符串:           [many@avention Desktop]$ who         many     :0           2019- ...

  10. 以位为单位存储标志-共用体-union

    一.程序的结构如下: typedef union _KEYST     {         struct         {             uint8 Key1_Flag :1;//表示第0 ...