P1552 派遣 左偏树
左偏树就是一个应该用堆维护的区间,然后需要进行合并操作而发明的算法,其实这个算法没什么难的,和树剖有点像,维护几个数值,然后递归回来的时候就可以修改。
题干:
题目背景 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。
题目描述 在这个帮派里,有一名忍者被称之为Master。除了Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。 现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,你就不需要支付管理者的薪水。 你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。 写一个程序,给定每一个忍者i的上级Bi,薪水Ci,领导力Li,以及支付给忍者们的薪水总预算M,输出在预算内满足上述要求时顾客满意度的最大值。
输入输出格式
输入格式: 第一行包含两个整数N和M,其中N表示忍者的个数,M表示薪水的总预算。 接下来N行描述忍者们的上级、薪水以及领导力。其中的第i行包含三个整数Bi,Ci,Li分别表示第i个忍者的上级,薪水以及领导力。Master满足Bi=,并且每一个忍者的老板的编号一定小于自己的编号Bi<i。
输出格式:
输出一个数,表示在预算内顾客的满意度的最大值。
输入输出样例
输入样例#: 复制 输出样例#: 复制 说明
≤ N ≤ , 忍者的个数;
≤ M ≤ ,,, 薪水总预算;
≤ Bi < i 忍者的上级的编号;
≤ Ci ≤ M 忍者的薪水;
≤ Li ≤ ,,, 忍者的领导力水平。
对于 %的数据,N ≤ 。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
int n,m,len = ,lst[];
int c[],l[];
struct node
{
int l,r,nxt;
}a[];
void add(int x,int y)
{
a[++len].l = x;
a[len].r = y;
a[len].nxt = lst[x];
lst[x] = len;
}
ll ans = ;
ll sum[],dis[];
int root[],ls[],rs[],siz[],v[];
int merge(int x,int y)
{
if(!x || !y) return x | y;
if(v[x] < v[y])
swap(x,y);
rs[x] = merge(rs[x],y);
if(dis[ls[x]] < dis[rs[x]]) swap(ls[x],rs[x]);
dis[x] = dis[rs[x]] + ;
siz[x] = siz[ls[x]] + siz[rs[x]] + ;
sum[x] = sum[ls[x]] + sum[rs[x]] + v[x];
return x;
}
void newnode(int x)
{
sum[x] = v[x] = c[x];
siz[x] = ;root[x] = x;
}
int del(int x)
{
return merge(ls[x],rs[x]);
}
void dfs(int x)
{
newnode(x);
for(int k = lst[x];k;k = a[k].nxt)
{
int y = a[k].r;
dfs(y);
root[x] = merge(root[x],root[y]);
}
while(sum[root[x]] > m && siz[root[x]]) root[x] = del(root[x]);
ans = max(ans,(ll)siz[root[x]] * (ll)l[x]);
}
int main()
{
read(n);read(m);
duke(i,,n)
{
int x;
read(x);read(c[i]);read(l[i]);
if(x)
add(x,i);
}
dfs();
printf("%lld\n",ans);
return ;
}
P1552 派遣 左偏树的更多相关文章
- 洛谷 - P1552 - 派遣 - 左偏树 - 并查集
首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...
- 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]
题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...
- [洛谷P1552] [APIO2012]派遣(左偏树)
这道题是我做的左偏树的入门题,奈何还是看了zsy大佬的题解才能过,唉,我太弱了. 左偏树总结 Part 1 理解题目 很显然,通过管理关系的不断连边,最后连出来的肯定是一棵树,那么不难得出,当一个忍者 ...
- [APIO2012]派遣 左偏树
P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...
- 【bzoj2809】派遣 (左偏树)
传送门 题目分析 每个节点都是一颗(大根堆)左偏树,先按bfs序存入数组,然后倒着从底层开始:如果当前节点的子树sum > m 那么就把根节点删去,然后统计更新答案,并将这棵树和父节点合并. c ...
- Luogu P1552 [APIO2012]派遣【左偏树】By cellur925
题目传送门 $Chat$ 哈哈哈我xj用dfs序乱搞竟然炸出了66分....(其实还是数据水,逃) $Sol$ 首先我们应该知道,一个人他自己的满意度与他子树所有节点的领导力是无关的,一个人的满意度受 ...
- 洛谷P1552 [APIO2012]派遣(左偏树)
传送门 做这题的时候现学了一波左偏树2333(好吧其实是当初打完板子就给忘了) 不难发现肯定是选子树里权值最小的点且选得越多越好 但如果在每一个点维护一个小根堆,我们得一直找知道权值大于m为止,时间会 ...
- APIO2012 派遣dispatching | 左偏树
题目链接:戳我 就是尽可能地选取排名小的,加起来就可以了.然后我们考虑利用一个大根堆,一个一个合并,如果超过派遣的钱,我们就把费用最大的那个忍者丢出队列. 左偏树,作为一个十分优秀的可并堆,我们这道题 ...
- 【左偏树】[APIO2012]派遣
题意可真的是有毒 第一眼树形背包可做?(反正我没用树形背包打过,边上巨佬打的背包似乎没拿分) 后来发现可以贪心搞,我们先把一个节点所有的儿子都取进去,之后不行的话再从大的开始拿走就好了 问题就变成了了 ...
随机推荐
- CAD二次开发控件,dwg控件,网页DWG控件,手机浏览编辑DWG控件
梦想绘图插件5.2(MxDraw5.2) 是国内最强,最专业的CAD开发插件(控件),不需要AutoCAD就能独立运行. 控件使用VC 2010开发,具有30万行代码规模,最早从2007年第一个版本完 ...
- CAD制作简单动画
主要用到函数说明: IMxDrawEntity::Rotate 旋转一个对象.详细说明如下: 参数 说明 [in] IMxDrawPoint* basePoint 旋转基点 [in] DOUBLE d ...
- (独孤九剑)--cURL
[一]概论 日常开发里,cURL使用最多的协议就是HTTP协议的GET.POST请求,其他协议和请求方式用的较少. [二]开启 开发前检验是否开启了cURL模块,开启方法为php.int中打开exte ...
- [C++] 化学方程式的格式化算法
网上普遍使用的化学方程式的格式普遍如下 例: KMnO4+FeSO4+H2SO4=Fe2(SO4)3+MnSO4+K2SO4+H2O 要把化学方程式格式化,单单一个正则表达式是非常反人类的,故可选用 ...
- linux less-分屏上下翻页浏览文件内容
博主推荐:获取更多 linux文件内容查看命令 收藏:linux命令大全 less命令的作用与more十分相似,都可以用来浏览文字档案的内容,不同的是less命令允许用户向前或向后浏览文件,而more ...
- Python学习——字典
字典 字典是另一种可变容器模型,且可存储任意类型对象. 1.创建字典 字典由键和对应值成对组成.每个键与值之间用:隔开,每对之间逗号隔开. 每个键应当互不相同,值可以相同.若同时出现两个相同的键,则后 ...
- 1. Jenkins 入门使用
1. 下载jenkins https://pkg.jenkins.io/redhat-stable/ sudo wget -O /etc/yum.repos.d/jenkins.repo https: ...
- clipboard.js兼容ios
再使用clipboard.js做项目时,项目需求是在非input,button等可以点击的标签(span,p,div)上实现点击来复制内容,在PC端和移动端android没问题,但是到了ios毫无反应 ...
- 百练4103:踩方格(DFS)
描述 有一个方格矩阵,矩阵边界在无穷远处.我们做如下假设:a. 每走一步时,只能从当前方格移动一格,走到某个相邻的方格上:b. 走过的格子立即塌陷无法再走第二次:c. 只能向北.东. ...
- 矩阵覆盖,基本DP题目
https://www.nowcoder.net/practice/72a5a919508a4251859fb2cfb987a0e6?tpId=13&tqId=11163&tPage= ...