k[原创]Faster R-CNN论文翻译
物体检测论文翻译系列:
- R-CNN
- SPP-net
- Fast R-CNN
- Faster R-CNN
Faster R-CNN论文翻译
Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然。什么想法?就是把那个一直明明应该换掉却一直被几位大神挤牙膏般地拖着不换的选择性搜索算法,即区域推荐算法。在Fast R-CNN的基础上将区域推荐换成了神经网络,而且这个神经网络和Fast R-CNN的卷积网络一起复用,大大缩短了计算时间。同时mAP又上了一个台阶,我早就说过了,他们一定是在挤牙膏。
Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks
摘要
1. 介绍
2 相关工作
3 FASTER R-CNN
3.1 区域推荐网络
3.1.1 锚点
平移不变性锚点
多尺度锚点作为回归参照物
3.1.2 损失函数
3.1.3 训练RPNs
3.2 RPN and Fast R-CNN之间共享特征
3.3 实现细节
4 EXPERIMENTS
5 CONCLUSION
参考文献
[2] R. Girshick, “Fast R-CNN,” in IEEE International Conference onComputer Vision (ICCV), 2015.
[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in InternationalConference on Learning Representations (ICLR), 2015.
[4] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search for object recognition,” InternationalJournal of Computer Vision (IJCV), 2013.
[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich featurehierarchies for accurate object detection and semantic segmentation,” in IEEE Conference on Computer Vision and PatternRecognition (CVPR), 2014.
[6] C. L. Zitnick and P. Dollar, “Edge boxes: Locating object ´proposals from edges,” in European Conference on ComputerVision (ECCV), 2014.
[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutionalnetworks for semantic segmentation,” in IEEE Conference onComputer Vision and Pattern Recognition (CVPR), 2015.
[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained partbased models,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2010.
[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,and Y. LeCun, “Overfeat: Integrated recognition, localizationand detection using convolutional networks,” in InternationalConference on Learning Representations (ICLR), 2014.
[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” inNeural Information Processing Systems (NIPS), 2015.
[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, andA. Zisserman, “The PASCAL Visual Object Classes Challenge2007 (VOC2007) Results,” 2007.
[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, “Microsoft COCO: Com- ´mon Objects in Context,” in European Conference on ComputerVision (ECCV), 2014.
[13] S. Song and J. Xiao, “Deep sliding shapes for amodal 3d objectdetection in rgb-d images,” arXiv:1511.02300, 2015.
[14] J. Zhu, X. Chen, and A. L. Yuille, “DeePM: A deep part-basedmodel for object detection and semantic part localization,”arXiv:1511.07131, 2015.
[15] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via multi-task network cascades,” arXiv:1512.04412, 2015.
[16] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fullyconvolutional localization networks for dense captioning,”arXiv:1511.07571, 2015.
[17] D. Kislyuk, Y. Liu, D. Liu, E. Tzeng, and Y. Jing, “Human curation and convnets: Powering item-to-item recommendationson pinterest,” arXiv:1511.04003, 2015.
[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learningfor image recognition,” arXiv:1512.03385, 2015.
[19] J. Hosang, R. Benenson, and B. Schiele, “How good are detection proposals, really?” in British Machine Vision Conference(BMVC), 2014.
[20] J. Hosang, R. Benenson, P. Dollar, and B. Schiele, “What makes ´for effective detection proposals?” IEEE Transactions on PatternAnalysis and Machine Intelligence (TPAMI), 2015.
[21] N. Chavali, H. Agrawal, A. Mahendru, and D. Batra,“Object-Proposal Evaluation Protocol is ’Gameable’,” arXiv:1505.05836, 2015.
[22] J. Carreira and C. Sminchisescu, “CPMC: Automatic object segmentation using constrained parametric min-cuts,”IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI), 2012.
[23] P. Arbelaez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, ´“Multiscale combinatorial grouping,” in IEEE Conference onComputer Vision and Pattern Recognition (CVPR), 2014.
[24] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image windows,” IEEE Transactions on Pattern Analysisand Machine Intelligence (TPAMI), 2012.
[25] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networksfor object detection,” in Neural Information Processing Systems(NIPS), 2013.
[26] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalableobject detection using deep neural networks,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[27] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov, “Scalable,high-quality object detection,” arXiv:1412.1441 (v1), 2015.
[28] P. O. Pinheiro, R. Collobert, and P. Dollar, “Learning tosegment object candidates,” in Neural Information ProcessingSystems (NIPS), 2015.
[29] J. Dai, K. He, and J. Sun, “Convolutional feature maskingfor joint object and stuff segmentation,” in IEEE Conference onComputer Vision and Pattern Recognition (CVPR), 2015.
[30] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun, “Object detection networks on convolutional feature maps,”arXiv:1504.06066, 2015.
[31] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, andY. Bengio, “Attention-based models for speech recognition,”in Neural Information Processing Systems (NIPS), 2015.
[32] M. D. Zeiler and R. Fergus, “Visualizing and understandingconvolutional neural networks,” in European Conference onComputer Vision (ECCV), 2014.
[33] V. Nair and G. E. Hinton, “Rectified linear units improverestricted boltzmann machines,” in International Conference onMachine Learning (ICML), 2010.
[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,D. Erhan, and A. Rabinovich, “Going deeper with convolutions,” in IEEE Conference on Computer Vision and PatternRecognition (CVPR), 2015.
[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D. Jackel, “Backpropagation applied tohandwritten zip code recognition,” Neural computation, 1989.
[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,and L. Fei-Fei, “ImageNet Large Scale Visual RecognitionChallenge,” in International Journal of Computer Vision (IJCV),2015.
[37] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” in NeuralInformation Processing Systems (NIPS), 2012.
[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutionalarchitecture for fast feature embedding,” arXiv:1408.5093, 2014.
[39] K. Lenc and A. Vedaldi, “R-CNN minus R,” in British MachineVision Conference (BMVC), 2015.
k[原创]Faster R-CNN论文翻译的更多相关文章
- [原创]Faster R-CNN论文翻译
Faster R-CNN论文翻译 Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什 ...
- 深度学习论文翻译解析(十三):Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Regi ...
- 深度学习论文翻译解析(四):Faster R-CNN: Down the rabbit hole of modern object detection
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Ton ...
- 深度学习论文翻译解析(三):Detecting Text in Natural Image with Connectionist Text Proposal Network
论文标题:Detecting Text in Natural Image with Connectionist Text Proposal Network 论文作者:Zhi Tian , Weilin ...
- R-CNN论文翻译
R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和 ...
- SSD: Single Shot MultiBoxDetector英文论文翻译
SSD英文论文翻译 SSD: Single Shot MultiBoxDetector 2017.12.08 摘要:我们提出了一种使用单个深层神经网络检测图像中对象的方法.我们的方法,名为SSD ...
- 深度学习论文翻译解析(二):An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
论文标题:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application ...
- 论文翻译——R-CNN(目标检测开山之作)
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用 ...
- 【论文翻译】NIN层论文中英对照翻译--(Network In Network)
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Netw ...
随机推荐
- 非常适合新手的jq/zepto源码分析08---ajax的封装
1.现在看看对JSONP的封装 $.ajaxJSONP = function(options, deferred){ if (!('type' in options)) return $.ajax(o ...
- ubuntu tweak Install
ubuntu tweak 1:增加PPA源 sudo add-apt-repository ppa:tualatrix/ppa 2:編輯源列表sudo gedit /etc/apt/sources.l ...
- Wincc操作数据库SQLSERVER
WINCC写数据库 在WINCC的图形编辑器中,在输入域的属性中.选择事件.再选择键盘的释放动作,在动作代码框中写下例如以下代码: Dim conn,rs Dim strsql Dim a a=HM ...
- chrome浏览器调试线上文件映射本地文件
chrome浏览器调试线上文件映射本地文件 通过ReRes让chrome拥有路径映射的autoResponse功能. 前端开发过程中,经常会有需要对远程环境调试的需求.比如,修改线上bug,开发环境不 ...
- 【转】Linux 查看CPU信息、机器型号等硬件信息
测试机器的硬件信息: 查看CPU信息(型号) # cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c 8 Intel(R) Xeo ...
- SOJ.Output the Yanghui triangel
Output the Yanghui triangel 总提交数量: 225 通过数量: 59 时间限制:1秒 内存限制:256兆 题目描写叙述 Writ ...
- 安装RPM包或者安装源代码包
第十一章 安装RPM包或者安装源代码包 在windows下安装一个软件非常轻松,仅仅要双击.exe的文件,安装提示连续"下一步"就可以,然而linux系统下安装一个软件似乎并不那么 ...
- Excel 常用快捷键键 快捷方式
移动整行的位置 Shift + Alt + 鼠标拖拽 不加Shit + Alt 移动后 留白 注意:需要移动鼠标到行的最上面,变成十字箭头
- 【转】Android进阶2之 阴影制作(Shadow)
阴影制作:包括各种形状(矩形,圆形等等),以及文字等等都能设置阴影. 阴影制作是什么原理呢? 其实很简单,你需要设置阴影的东西被看作一个主层.然后在主层下面画一个阴影层. 阴影制作涉及到一个重要函数: ...
- 在C#中实现listbox的项上下移动(winform) 标准
在C#中实现listbox的项上下移动(winform) 收藏人:梅毛子360 2013-10-02 | 阅:1 转:2 | 分享 | 来源 usi ...