树形dp+笛卡尔树+单调栈

这道题跟树形dp有什么关系?

事实上,我们对矩形建立笛卡尔树,先找出最矮的矩形,向两边区间最矮的矩形连边,这样就构成了一棵二叉树,因为只有一个矮的区间会对高的区间造成影响,而且儿子之间不会互相影响,并且这样一层一层保证了每段矩形都会被覆盖到,其实就是单调栈,所以这样连是对的,然后跑一个树形背包,dp[i][j]表示i节点子树放了j个车,很明显两个儿子之间不会互相影响,所以自然是可以合并儿子之间的信息。

f[u][i]表示自己不放儿子放的方案数,dp[u][i]表示子树里放i个的方案数,然后转移一下就行了。一个 n*m的矩形内放k个的方案数是k!*C(n,k)*C(m,k),选完行和列的交点后全排列表示所有交点。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = , mod = 1e9 + ;
int n, K, root;
int H[N], h[N], lc[N], rc[N], w[N];
ll dp[N][N], fac[], f[N][N];
void up(ll &x, const ll &t) { x = (x + t) % mod; }
ll power(ll x, ll t)
{
ll ret = ;
for(; t; t >>= , x = x * x % mod) if(t & ) ret = ret * x % mod;
return ret;
}
ll inv(ll x) { return power(x, mod - ); }
ll C(int a, int b)
{
if(a < b) return ;
return fac[a] * inv(fac[b]) % mod * inv(fac[a - b]) % mod;
}
ll calc(int a, int b, int K)
{
if(a < K || b < K) return ;
ll ret = fac[K] * C(a, K) % mod * C(b, K) % mod;
return ret;
}
void dfs(int u)
{
f[u][] = dp[u][] = ;
if(!u) return;
dfs(lc[u]);
dfs(rc[u]);
for(int i = ; i <= K; ++i)
for(int j = ; j <= i; ++j)
up(f[u][i], dp[lc[u]][j] * dp[rc[u]][i - j] % mod);
for(int i = K; i >= ; --i)
for(int j = ; j <= i; ++j) if(f[u][j])
up(dp[u][i], f[u][j] * calc(H[u], w[u] - j, i - j) % mod);
}
int build(int l, int r)
{
if(l > r) return ;
int p = l;
for(int i = l; i <= r; ++i) if(h[i] < h[p]) p = i;
lc[p] = build(l, p - );
rc[p] = build(p + , r);
H[lc[p]] = h[lc[p]] - h[p];
H[rc[p]] = h[rc[p]] - h[p];
w[p] = r - l + ;
return p;
}
int main()
{
scanf("%d%d", &n, &K);
fac[] = ;
for(int i = ; i <= n; ++i) scanf("%d", &h[i]), H[i] = h[i];
for(int i = ; i <= ; ++i) fac[i] = fac[i - ] * (ll)i % mod;
root = build(, n);
dfs(root);
printf("%lld\n", dp[root][K]);
return ;
}

bzoj2616的更多相关文章

  1. BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)

    考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...

  2. 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP

    [BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...

  3. BZOJ2616 : SPOJ PERIODNI

    长为$A$,宽为$B$的矩阵放$K$个车的方案数$=C(A,K)\times C(B,K)\times K!$. 建立笛卡尔树,那么左右儿子独立,设$f[i][j]$表示$i$子树内放$j$个车的方案 ...

  4. bzoj2616: SPOJ PERIODNI——笛卡尔树+DP

    不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子 ...

  5. [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元

    2616: SPOJ PERIODNI Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 128  Solved: 48[Submit][Status][ ...

  6. BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)

    题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高 ...

  7. 省选/NOI刷题Day2

    bzoj2616 放一个车的时候相当于剪掉棋盘的一行,于是就可以转移了,中间状态转移dp套dp,推一下即可 bzoj2878 环套树期望dp 手推一下递推式即可 bzoj3295 树状数组套权值线段树 ...

随机推荐

  1. Spring框架 JdbcTemplate类 @Junit单元测试,可以让方法独立执行 如:@Test

    package cn.zmh.PingCe; import org.junit.Test; import org.springframework.jdbc.core.BeanPropertyRowMa ...

  2. spring mvc拦截器原理分析

    我的springMVC+mybatis中的interceptor使用@autowired注入DAO失败,导致报空指针错误,这个是为什么呢? :空指针说明没有注入进来,你可以检查一下你的这个拦截器int ...

  3. 体验Windows 2008 R2的RemoteApp

    [说明]这是<中小企业虚拟机解决方案大全>一书中部分章节的摘抄.该书预计于2009年12月初由<电子工业出版社>出版,敬请期待!   通过远程桌面服务,组织可以为用户提供随时随 ...

  4. BUPT 2012复试机考 4T

    题目描述 我们都学习过计算机网络,知道网络层IP协议数据包的头部格式如下: 其中IHL表示IP头的长度,单位是4字节:总长表示整个数据包的长度,单位是1字节.传输层的TCP协议数据段的头部格式如下:  ...

  5. Python 一行命令ftp服务器

    Obligatory Twisted example: twistd -n ftp And probably useful: twistd ftp --help Usage: twistd [opti ...

  6. vue - 前置工作 - 目录功能介绍

    一个DEMOS的完整目录(由于GWF问题,我就不一一打开网站一个个去搜索并且解释了)可以去关注:https://www.cnblogs.com/ye-hcj build build.js(本文来自ht ...

  7. Windows-速度优化的几个方面

    One. Win+R - > cmd- > msconfig 禁用不需要的启动项! Two. 关闭一些视觉选项 Three. 设置应用启动快捷键

  8. grunt 试用笔记

    Gruntjs是JavaScript项目的构建工具,也是基于node的一个命令行工具.很多开源JS项目都是使用它搭建.如jQuery.Qunit.CanJS等.它有以下作用 合并JS文件压缩JS文件单 ...

  9. Java字符串String 集合的迭代器

    Java字符串String 我们知道Java的字符窜是Immutable(不可变)的,一旦创建就不能更改其内容了:平常我们对字符串的操作是最多的,其实对字符串的操作,返回的字符串都是新建的字符串对象, ...

  10. HDU 2049 不容易系列之(4)——考新郎 (递推,含Cmn公式)

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...