4 Values whose Sum is 0
Time Limit: 15000MS   Memory Limit: 228000K
Total Submissions: 23757   Accepted: 7192
Case Time Limit: 5000MS

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

Source

[Submit]   [Go Back]   [Status]  
[Discuss]

有时候问题的规模比较大,无法枚举所有元素的组合,但能够枚举一般元素的组合。此时,将问题拆成两半后分别枚举,再合并他们的结果这一方法往往非常有效。

//折半枚举(双向搜索)poj2785
#include <iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=5005;
int n;
ll a[maxn],b[maxn],c[maxn],d[maxn];
ll cd[maxn*maxn]; void solve()
{
//枚举cd的组合
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cd[i*n+j]=c[i]+d[j];
}
}
sort(cd,cd+n*n);
ll res=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
ll CD=-(a[i]+b[j]);
//二分搜索取出cd中和为CD的部分
res+=upper_bound(cd,cd+n*n,CD)-lower_bound(cd,cd+n*n,CD);
}
}
printf("%lld\n",res);
} int main()
{
cin>>n;
for(int j=0;j<n;j++)
{
cin>>a[j]>>b[j]>>c[j]>>d[j];
}
solve();
return 0;
}

折半枚举(双向搜索)poj27854 Values whose Sum is 0的更多相关文章

  1. POJ2785-4 Values whose Sum is 0

    传送门:http://poj.org/problem?id=2785 Description The SUM problem can be formulated as follows: given f ...

  2. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  3. UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)

    4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...

  4. POJ:2785-4 Values whose Sum is 0(双向搜索)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 26974 Accepted: ...

  5. [poj2785]4 Values whose Sum is 0(hash或二分)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...

  6. UVA1152-4 Values whose Sum is 0(分块)

    Problem UVA1152-4 Values whose Sum is 0 Accept: 794  Submit: 10087Time Limit: 9000 mSec Problem Desc ...

  7. 4 Values whose Sum is 0(二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 21370   Accep ...

  8. POJ 2785 4 Values whose Sum is 0(想法题)

    传送门 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 20334   A ...

  9. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

随机推荐

  1. MTK平台释疑android M 配置中断相关问题

    1.使用老方法(android L)配置中断,调用request_irq函数时出错,错误代码 -22  Dear Customer: 您好! 如电话沟通,贵司可以在发过来的code基础上做下面的修改再 ...

  2. Linux下汇编语言学习笔记52 ---

    这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...

  3. MongoDB小结22 - id生成规则

    MongoDB的文档必须有一个_id键. 目的是为了确认在集合里的每个文档都能被唯一标识. ObjectId 是 _id 的默认类型. ObjectId 采用12字节的存储空间,每个字节两位16进制数 ...

  4. 表单验证的完美解决方案Validform

    具体使用方法参考官网介绍吧,相当的简单: 文档:http://validform.rjboy.cn/document.html demo:http://validform.rjboy.cn/demo. ...

  5. clamav完整查杀linux病毒实战(摘抄)

    http://dadloveu.blog.51cto.com/blog/715500/1882521 Linux服务器一直给我们的印象是安全.稳定.可靠,性能卓越.由于一来Linux本身的安全机制,L ...

  6. react 项目实战(八)图书管理与自动完成

    图书管理 src / pages / BookAdd.js   // 图书添加页 /** * 图书添加页面 */ import React from 'react'; // 布局组件 import H ...

  7. react 项目实战(一)创建项目 及 服务端搭建

    1.安装 React社区提供了众多的脚手架,这里我们使用官方推荐的create-react-app. //安装脚手架 npm install -g create-react-app //生成并运行项目 ...

  8. POJ2773 Happy 2006【容斥原理】

    题目链接: http://poj.org/problem?id=2773 题目大意: 给你两个整数N和K.找到第k个与N互素的数(互素的数从小到大排列).当中 (1 <= m <= 100 ...

  9. UVa10048_Audiophobia(最短路/floyd)(小白书图论专题)

    解题报告 题意: 求全部路中最大分贝最小的路. 思路: 类似floyd算法的思想.u->v能够有另外一点k.通过u->k->v来走,拿u->k和k->v的最大值和u-&g ...

  10. [swift实战入门]手把手教你编写2048(一)

    苹果设备越来越普及,拿着个手机就想捣鼓点啥,于是乎就有了这个系列,会一步一步教大家学习swift编程,学会自己做一个自己的app,github地址:https://github.com/scarlet ...