传送门

做这题的时候现学了一波左偏树2333(好吧其实是当初打完板子就给忘了)

不难发现肯定是选子树里权值最小的点且选得越多越好

但如果在每一个点维护一个小根堆,我们得一直找知道权值大于m为止,时间会炸

于是我们对每一个点维护一个大根堆,一直pop直到堆里总的权值小于m为止,此时堆里的元素个数就是总共的人数

不难发现每一个人最多只会被pop一次,于是时间复杂度就是$O(n\ logn)$

左偏树合并写错了竟然还能有67分……

 //minamoto
#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e5+;
int head[N],Next[N],ver[N],tot;
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
int val[N],rt[N],L[N],R[N],a[N],d[N],sz[N],n,m;ll sum[N],ans;
int merge(int x,int y){
if(!x||!y) return x+y;
if(val[x]<val[y]) swap(x,y);
R[x]=merge(R[x],y);
if(d[R[x]]>d[L[x]]) swap(L[x],R[x]);
d[x]=d[R[x]]+;return x;
}
void dfs(int u){
sz[u]=,sum[u]=val[u],rt[u]=u;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];dfs(v);
sz[u]+=sz[v],sum[u]+=sum[v],rt[u]=merge(rt[u],rt[v]);
}
while(sum[u]>m&&sz[u]){
sum[u]-=val[rt[u]],--sz[u],rt[u]=merge(L[rt[u]],R[rt[u]]);
}
cmax(ans,1ll*sz[u]*a[u]);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=;i<=n;++i){
int fa=read();val[i]=read(),a[i]=read();
add(fa,i);
}
dfs();
printf("%lld\n",ans);
return ;
}

洛谷P1552 [APIO2012]派遣(左偏树)的更多相关文章

  1. 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]

    题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...

  2. [洛谷P1552] [APIO2012]派遣(左偏树)

    这道题是我做的左偏树的入门题,奈何还是看了zsy大佬的题解才能过,唉,我太弱了. 左偏树总结 Part 1 理解题目 很显然,通过管理关系的不断连边,最后连出来的肯定是一棵树,那么不难得出,当一个忍者 ...

  3. [APIO2012]派遣 左偏树

    P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...

  4. 2018.07.31洛谷P1552 [APIO2012]派遣(可并堆)

    传送门 貌似是个可并堆的模板题,笔者懒得写左偏堆了,直接随机堆水过.实际上这题就是维护一个可合并的大根堆一直从叶子合并到根,如果堆中所有数的和超过了上限就一直弹直到所有数的和不超过上限为止,最后对于当 ...

  5. [洛谷P1552][APIO2012]派遣

    题目大意:有一棵$n$个点的树,和一个费用$m$,每个点有一个费用和价值,请选一个点,再从它的子树中选取若干个点,使得那个点的价值乘上选的点的个数最大,要求选的点费用总和小于等于$m$ 题解:树形$d ...

  6. 洛谷1552 [APIO2012]派遣

    洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...

  7. 洛谷 - P1552 - 派遣 - 左偏树 - 并查集

    首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...

  8. P1552 派遣 左偏树

    左偏树就是一个应该用堆维护的区间,然后需要进行合并操作而发明的算法,其实这个算法没什么难的,和树剖有点像,维护几个数值,然后递归回来的时候就可以修改. 题干: 题目背景 在一个忍者的帮派里,一些忍者们 ...

  9. 【bzoj2809】[Apio2012]dispatching 左偏树

    2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...

随机推荐

  1. PAT (Advanced Level) 1036. Boys vs Girls (25)

    简单题. #include<iostream> #include<cstring> #include<cmath> #include<algorithm> ...

  2. POJ 2513 【字典树】【欧拉回路】

    题意: 有很多棒子,两端有颜色,告诉你两端的颜色,让你把这些棒子拼接起来要求相邻的接点的两个颜色是一样的. 问能否拼接成功. 思路: 将颜色看作节点,将棒子看作边,寻找欧拉通路. 保证图的连通性的时候 ...

  3. Java添加、提取、替换和删除PDF图片

    (一)简介 这篇文章将介绍在Java中添加.提取.删除和替换PDF文档中的图片. 工具使用: Free Spire.PDF for JAVA 2.4.4(免费版) Intellij IDEA Jar包 ...

  4. 转 常见hash算法的原理

    散列表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法.顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙. 散列表(Hash table,也叫 ...

  5. 使用uncss去除无用的CSS

    1.安装nodejs,gulp,gulp_uncss 1.1.说明:gulp-uncss 是gulp的一个插件.gulp是基于nodejs,理所当然需要安装nodejs: 1.2.安装:打开nodej ...

  6. oracle字段的所有类型

    字段类型    中文说明    限制条件    其它说明 CHAR    固定长度字符串    最大长度2000    bytes VARCHAR2    可变长度的字符串    最大长度4000   ...

  7. Python开发的一个IDE推荐,Sublime Text 3

    Sublime Text 3 官网下载地址为, LINK. 目前最新版本是3114. 这里转载泱泱长空的授权文件(注册码)文章[1],将几个可以用的注册码列举如下: 补充:2016.05 最近经过测试 ...

  8. 移动端CSS小结

    Meta 标签 <meta name="viewport"  content="width=device-width, user-scalable=no, init ...

  9. Linux 的 Socket IO 模型

    前言 之前有看到用很幽默的方式讲解Windows的socket IO模型,借用这个故事,讲解下linux的socket IO模型: 老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系. 他 ...

  10. HTML的DIV如何实现垂直居中

    外部的DIV必须有如下代码 display:table-cell; vertical-align:middle;   这样可以保证里面的东西,无论是DIV还是文本都可以垂直居中