Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:

Triangle   P3,n=n(n+1)/2   1, 3, 6, 10, 15, ...
Square   P4,n=n2   1, 4, 9, 16, 25, ...
Pentagonal   P5,n=n(3n−1)/2   1, 5, 12, 22, 35, ...
Hexagonal   P6,n=n(2n−1)   1, 6, 15, 28, 45, ...
Heptagonal   P7,n=n(5n−3)/2   1, 7, 18, 34, 55, ...
Octagonal   P8,n=n(3n−2)   1, 8, 21, 40, 65, ...

The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.

  1. The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
  2. Each polygonal type: triangle (P3,127=8128), square (P4,91=8281), and pentagonal (P5,44=2882), is represented by a different number in the set.
  3. This is the only set of 4-digit numbers with this property.

Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented
by a different number in the set.

又暴力破解了一次ㄟ( ▔, ▔ )ㄏ

一開始没看清题意,我以为这些数依次是满足triangle, square, pentagonal, hexagonal, heptagonal, and octagonal。结果发现无解┑( ̄Д  ̄)┍

  1. #include <iostream>
  2. #include <string>
  3. #include <vector>
  4. #include <unordered_map>
  5. #include <time.h>
  6. using namespace std;
  7.  
  8. int triangle[100];
  9. int pentagonal[10000];
  10. int hextagonal[10000];
  11. int heptagonal[10000];
  12. int octagonal[10000];
  13. int tri_count = 0;
  14.  
  15. void getTriangle()
  16. {
  17. int count = 0;
  18. for (int i = 1; i <= 200; i++)
  19. {
  20. int num = i*(i + 1) / 2;
  21. if (num >1000&&num<10000)
  22. triangle[count++] = num;
  23. }
  24. tri_count = count;
  25. }
  26.  
  27. bool isSqure(int n)
  28. {
  29. int i = sqrt(n);
  30. if (i*i == n&&n>1000&&n<10000)
  31. return true;
  32. return false;
  33. }
  34.  
  35. void getPentagonal()
  36. {
  37. for (int i = 1; i <= 200; i++)
  38. {
  39. int num = i*(3 * i - 1) / 2;
  40. if (num > 1000 && num < 10000)
  41. pentagonal[num] = 1;
  42. }
  43. }
  44.  
  45. bool isPentagonal(int n)
  46. {
  47. if (pentagonal[n] == 1)
  48. return true;
  49. return false;
  50. }
  51.  
  52. void getHexagonal()
  53. {
  54. for (int i = 1; i <= 200; i++)
  55. {
  56. int num = i*(2 * i - 1);
  57. if (num>1000 && num < 10000)
  58. hextagonal[num] = 1;
  59. }
  60. }
  61.  
  62. bool isHexagonal(int n)
  63. {
  64. if (hextagonal[n] == 1)
  65. return true;
  66. return false;
  67. }
  68.  
  69. void getHeptagonal()
  70. {
  71. for (int i = 1; i <= 200; i++)
  72. {
  73. int num = i*(5 * i - 3) / 2;
  74. if (num > 1000 && num < 10000)
  75. heptagonal[num] = 1;
  76. }
  77. }
  78.  
  79. bool isHeptagonal(int n)
  80. {
  81. if (heptagonal[n] == 1)
  82. return true;
  83. return false;
  84. }
  85.  
  86. void getOctagonal()
  87. {
  88. for (int i = 1; i <= 200; i++)
  89. {
  90. int num = i*(3 * i - 2);
  91. if (num > 1000 && num < 10000)
  92. octagonal[num] = 1;
  93. }
  94. }
  95.  
  96. bool isOctagonal(int n)
  97. {
  98. if (octagonal[n] == 1)
  99. return true;
  100. return false;
  101. }
  102.  
  103. bool(*figurate[5])(int) = { isSqure, isPentagonal, isHexagonal, isHeptagonal, isOctagonal };
  104.  
  105. vector<int> GetRandomSequence()
  106. {
  107. unordered_map<int, int>tab;
  108. vector<int>res;
  109. int num;
  110. for (int i = 0; i < 5; i++)
  111. {
  112. do{
  113. num = rand() % 5;
  114. } while (tab.find(num) != tab.end());
  115. tab.insert(make_pair(num, 1));
  116. res.push_back(num);
  117. }
  118. return res;
  119. }
  120.  
  121. int check()
  122. {
  123. int sum = 0;
  124. srand((int)time(0));
  125. vector<int>rs = GetRandomSequence();
  126. for (int i = 0; i < tri_count; i++)
  127. {
  128. int a = triangle[i] / 100;
  129. int b = triangle[i] % 100;
  130. for (int s = 10; s <= 99; s++)
  131. {
  132. if ((*figurate[rs[0]])(b * 100 + s))
  133. {
  134. for (int p = 10; p <= 99; p++)
  135. {
  136. if ((*figurate[rs[1]])(s * 100 + p))
  137. {
  138. for (int hx = 10; hx <= 99; hx++)
  139. {
  140. if ((*figurate[rs[2]])(p * 100 + hx))
  141. {
  142. for (int hp = 10; hp <= 99; hp++)
  143. {
  144. if ((*figurate[rs[3]])(hx * 100 + hp))
  145. {
  146. if ((*figurate[rs[4]])(hp * 100 + a))
  147. {
  148. sum = triangle[i] + b * 100 + s + s * 100 + p + p * 100 + hx + hx * 100 + hp + hp * 100 + a;
  149. return sum;
  150. }
  151. }
  152. }
  153. }
  154. }
  155. }
  156. }
  157. }
  158. }
  159. }
  160. return -1;
  161. }
  162.  
  163. int main()
  164. {
  165. memset(pentagonal, 0, sizeof(pentagonal));
  166. memset(hextagonal, 0, sizeof(hextagonal));
  167. memset(heptagonal, 0, sizeof(heptagonal));
  168. memset(octagonal, 0, sizeof(octagonal));
  169.  
  170. getTriangle();
  171. getPentagonal();
  172. getHexagonal();
  173. getHeptagonal();
  174. getOctagonal();
  175.  
  176. int flag;
  177. while (true)
  178. {
  179. flag = check();
  180. if (flag != -1)
  181. break;
  182. }
  183.  
  184. cout << flag << endl;
  185.  
  186. system("pause");
  187. return 0;
  188. }

把那个随机生成全排列换成next_permutation也是能搞出来的。

Project Euler:Problem 61 Cyclical figurate numbers的更多相关文章

  1. Project Euler:Problem 42 Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  2. Project Euler:Problem 55 Lychrel numbers

    If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...

  3. Project Euler:Problem 88 Product-sum numbers

    A natural number, N, that can be written as the sum and product of a given set of at least two natur ...

  4. Project Euler:Problem 87 Prime power triples

    The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...

  5. Project Euler:Problem 89 Roman numerals

    For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...

  6. Project Euler:Problem 93 Arithmetic expressions

    By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...

  7. Project Euler:Problem 28 Number spiral diagonals

    Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...

  8. Project Euler:Problem 47 Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...

  9. Project Euler:Problem 63 Powerful digit counts

    The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...

随机推荐

  1. QT+信号有参数与无参数的实现+QT4和QT5在信号和槽使用上的区别

    在QT5中,信号有参数和无参数 #ifndef SUBWIDGET_H #define SUBWIDGET_H #include <QWidget> #include <QPushB ...

  2. js数字转金额,ajax调用接口,后台返回html(完整页面),打开新窗口并写入html

    一.转换成金额形式 function toMoney(num){ if(num){ if(isNaN(num)) { alert("金额中含有不能识别的字符"); return; ...

  3. manjaro利用docker使用MySQL

    使用docker安装MySQL并使用 安装docker: sudo yaourt -S docker 使用docker安装mysql: systemctl start docker # 启动docke ...

  4. Spring Data Redis入门示例:字符串操作(六)

    Spring Data Redis对字符串的操作,封装在了ValueOperations和BoundValueOperations中,在集成好了SPD之后,在需要的地方引入: // 注入模板操作实例 ...

  5. encodeURI()与decodeURI()等转码方法

    只针对文本编码 encodeURI() 只针对文本解码 decodeURI()针对文本和特殊字符的编码  encodeURIComponent()针对文本和特殊字符的解码  decodeURIComp ...

  6. PHP将数据库的数据转换成json格式

    header('content-type:application/json;charset=utf8');  $results = array();     while ($row = mysql_f ...

  7. mysql 数据库 show命令

    MySQL中有很多的基本命令,show命令也是其中之一,在很多使用者中对show命令的使用还容易产生混淆,本文汇集了show命令的众多用法. 1. show tables或show tables fr ...

  8. ps---打开文件及图片保存格式

    1.打开图片,可以按Ctrl或者Shift来进行多张图片的选择或者用鼠标框选. 2.勾选图像序列,可以选择命名上有次序的多个图像. 3. PSD是ps里面的标准保存格式,包含颜色.图层.通道.路径.动 ...

  9. day22 01 初识面向对象----简单的人狗大战小游戏

    day22 01 初识面向对象----简单的人狗大战小游戏 假设有一个简单的小游戏:人狗大战   怎样用代码去实现呢? 首先得有任何狗这两个角色,并且每个角色都有他们自己的一些属性,比如任务名字nam ...

  10. 数据结构( Pyhon 语言描述 ) — — 第4章:数据和链表结构

    数据结构是表示一个集合中包含的数据的一个对象 数组数据结构 数组是一个数据结构 支持按照位置对某一项的随机访问,且这种访问的时间是常数 在创建数组时,给定了用于存储数据的位置的一个数目,并且数组的长度 ...