Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:

Triangle   P3,n=n(n+1)/2   1, 3, 6, 10, 15, ...
Square   P4,n=n2   1, 4, 9, 16, 25, ...
Pentagonal   P5,n=n(3n−1)/2   1, 5, 12, 22, 35, ...
Hexagonal   P6,n=n(2n−1)   1, 6, 15, 28, 45, ...
Heptagonal   P7,n=n(5n−3)/2   1, 7, 18, 34, 55, ...
Octagonal   P8,n=n(3n−2)   1, 8, 21, 40, 65, ...

The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.

  1. The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
  2. Each polygonal type: triangle (P3,127=8128), square (P4,91=8281), and pentagonal (P5,44=2882), is represented by a different number in the set.
  3. This is the only set of 4-digit numbers with this property.

Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented
by a different number in the set.

又暴力破解了一次ㄟ( ▔, ▔ )ㄏ

一開始没看清题意,我以为这些数依次是满足triangle, square, pentagonal, hexagonal, heptagonal, and octagonal。结果发现无解┑( ̄Д  ̄)┍

#include <iostream>
#include <string>
#include <vector>
#include <unordered_map>
#include <time.h>
using namespace std; int triangle[100];
int pentagonal[10000];
int hextagonal[10000];
int heptagonal[10000];
int octagonal[10000];
int tri_count = 0; void getTriangle()
{
int count = 0;
for (int i = 1; i <= 200; i++)
{
int num = i*(i + 1) / 2;
if (num >1000&&num<10000)
triangle[count++] = num;
}
tri_count = count;
} bool isSqure(int n)
{
int i = sqrt(n);
if (i*i == n&&n>1000&&n<10000)
return true;
return false;
} void getPentagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(3 * i - 1) / 2;
if (num > 1000 && num < 10000)
pentagonal[num] = 1;
}
} bool isPentagonal(int n)
{
if (pentagonal[n] == 1)
return true;
return false;
} void getHexagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(2 * i - 1);
if (num>1000 && num < 10000)
hextagonal[num] = 1;
}
} bool isHexagonal(int n)
{
if (hextagonal[n] == 1)
return true;
return false;
} void getHeptagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(5 * i - 3) / 2;
if (num > 1000 && num < 10000)
heptagonal[num] = 1;
}
} bool isHeptagonal(int n)
{
if (heptagonal[n] == 1)
return true;
return false;
} void getOctagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(3 * i - 2);
if (num > 1000 && num < 10000)
octagonal[num] = 1;
}
} bool isOctagonal(int n)
{
if (octagonal[n] == 1)
return true;
return false;
} bool(*figurate[5])(int) = { isSqure, isPentagonal, isHexagonal, isHeptagonal, isOctagonal }; vector<int> GetRandomSequence()
{
unordered_map<int, int>tab;
vector<int>res;
int num;
for (int i = 0; i < 5; i++)
{
do{
num = rand() % 5;
} while (tab.find(num) != tab.end());
tab.insert(make_pair(num, 1));
res.push_back(num);
}
return res;
} int check()
{
int sum = 0;
srand((int)time(0));
vector<int>rs = GetRandomSequence();
for (int i = 0; i < tri_count; i++)
{
int a = triangle[i] / 100;
int b = triangle[i] % 100;
for (int s = 10; s <= 99; s++)
{
if ((*figurate[rs[0]])(b * 100 + s))
{
for (int p = 10; p <= 99; p++)
{
if ((*figurate[rs[1]])(s * 100 + p))
{
for (int hx = 10; hx <= 99; hx++)
{
if ((*figurate[rs[2]])(p * 100 + hx))
{
for (int hp = 10; hp <= 99; hp++)
{
if ((*figurate[rs[3]])(hx * 100 + hp))
{
if ((*figurate[rs[4]])(hp * 100 + a))
{
sum = triangle[i] + b * 100 + s + s * 100 + p + p * 100 + hx + hx * 100 + hp + hp * 100 + a;
return sum;
}
}
}
}
}
}
}
}
}
}
return -1;
} int main()
{
memset(pentagonal, 0, sizeof(pentagonal));
memset(hextagonal, 0, sizeof(hextagonal));
memset(heptagonal, 0, sizeof(heptagonal));
memset(octagonal, 0, sizeof(octagonal)); getTriangle();
getPentagonal();
getHexagonal();
getHeptagonal();
getOctagonal(); int flag;
while (true)
{
flag = check();
if (flag != -1)
break;
} cout << flag << endl; system("pause");
return 0;
}

把那个随机生成全排列换成next_permutation也是能搞出来的。

Project Euler:Problem 61 Cyclical figurate numbers的更多相关文章

  1. Project Euler:Problem 42 Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  2. Project Euler:Problem 55 Lychrel numbers

    If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...

  3. Project Euler:Problem 88 Product-sum numbers

    A natural number, N, that can be written as the sum and product of a given set of at least two natur ...

  4. Project Euler:Problem 87 Prime power triples

    The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...

  5. Project Euler:Problem 89 Roman numerals

    For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...

  6. Project Euler:Problem 93 Arithmetic expressions

    By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...

  7. Project Euler:Problem 28 Number spiral diagonals

    Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...

  8. Project Euler:Problem 47 Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...

  9. Project Euler:Problem 63 Powerful digit counts

    The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...

随机推荐

  1. 编写一个函数,输入n为偶数时,调用函数求1/2+1/4+...+1/n,当输入n为奇数时,调用函数1/1+1/3+...+1/n(利用指针函数)

    *题目:编写一个函数,输入n为偶数时,调用函数求1/2+1/4+...+1/n,当输入n为奇数时,调用函数1/1+1/3+...+1/n(利用指针函数) public class 第三十九题按条件计算 ...

  2. 文件默认权限umask掩码

    umask命令 作用:用于显示.设置文件的缺省权限 格式:umask   [-S] -S表示以rwx形式显示新建文件缺省权限 系统的默认掩码是0022 文件创建时的默认权限 = 0666 - umas ...

  3. 厚溥教育1718部数据库连接作业答案,分装一个操作数据库而无需写SQL语句的函数

    <?php header("Content-type:text/html;charset=utf8"); //PHP操作数据库的函数 function phpsql($dbc ...

  4. 对数组内容使用了json_encode返回汉字内容返回了空值

    如果使用json_encode对数组进行转成JSON字符串时候,发现汉字的全部为空,这样可以说明的一点是你的页面上用的一定不是UTF8编码,在PHP手册中对json_encode中待编码的值已经说明所 ...

  5. HTML5新增的非主体元素header元素、footer元素、hgroup元素、adress元素

    ---恢复内容开始--- header header元素是一种具有引导和导航作用的结构元素,通常用来放置整个页面或页面内的一个内容区块的标题,但是也可以包含其他内容,例如数据表格.搜索表单或相关的lo ...

  6. CSS3---关于文本

    1.text-overflow用来设置是否使用一个省略标记(...)标示对象内文本的溢出. 2.但是text-overflow只是用来说明文字溢出时用什么方式显示,要实现溢出时产生省略号的效果,还须定 ...

  7. InnoDB体系架构总结(一)

    缓冲池:    是一块内存区域,通过内存的速度来弥补磁盘速度较慢对数据库性能的影响.在数据库中读取的页数据会存放到缓冲池中,下次再读取相同页的时候,会首先判断该页是否在缓冲池中.对于数据库中页的修改操 ...

  8. 虚拟机如何设置静态IP

    一.本机环境 Mac.VMware Fusion 10, CentOS6.8 二.设置静态IP地址 1.选择网络连接模式,选择NAT模式 注意: 1)必须要选择NAT模式,否则你的虚拟机与主机始终会在 ...

  9. 【HIHOCODER 1048】 状态压缩·二

    描述 历经千辛万苦,小Hi和小Ho终于到达了举办美食节的城市!虽然人山人海,但小Hi和小Ho仍然抑制不住兴奋之情,他们放下行李便投入到了美食节的活动当中.美食节的各个摊位上各自有着非常多的有意思的小游 ...

  10. 简单的发红包的PHP算法

    假设有有10元钱 ,发给10个人.保证每个人都有钱拿,最少分得0.01.我们最先想到的肯定就是随机.0.01-10随机.但是会出现第一个人就分得9.99的情况.下面就没人可分了.然后就是我的错误思路 ...