//点标从0-n-1, 開始时先init 复杂度n^3
//对于边(u,v,flow):
//g[u][v]+=flow;
//g[v][u]+=flow;
typedef long long ll;
const int N = 305;
const ll inf = 1e18;
ll g[N][N], w[N];
int a[N], v[N], na[N];
ll mincut(int n) {
int i, j, pv, zj;
ll best = inf;
for(i = 0; i < n; i ++) v[i] = i; while(n > 1) {
for(a[v[0]] = 1, i = 1; i < n; i ++) {
a[v[i]] = 0;
na[i-1] = i;
w[i] = g[v[0]][v[i]];
}
for(pv = v[0], i = 1; i < n; i ++) {
for(zj = -1, j = 1; j < n; j ++)
if(!a[v[j]] && (zj < 0 || w[j] > w[zj])) zj = j; a[v[zj]] = 1;
if(i == n-1) {
if(best > w[zj]) best = w[zj];
for(i = 0; i < n; i ++) {
g[v[i]][pv] = g[pv][v[i]] += g[v[zj]][v[i]];
}
v[zj] = v[--n];
break;
}
pv = v[zj];
for(j = 1; j < n; j ++) if(!a[v[j]])
w[j] += g[v[zj]][v[j]];
}
}
return best;
}
void init(int n){
for(int i = 0; i < n; i ++)
for(int j = 0; j < n; j ++)
g[i][j] = g[j][i] = 0;
}

全局最小割模版 n^3的更多相关文章

  1. poj 2914(stoer_wanger算法求全局最小割)

    题目链接:http://poj.org/problem?id=2914 思路:算法基于这样一个定理:对于任意s, t   V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Cont ...

  2. ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)

    题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...

  3. HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)

    Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...

  4. 全局最小割Stoer-Wagner算法

    借鉴:http://blog.kongfy.com/2015/02/kargermincut/ 提到无向图的最小割问题,首先想到的就是Ford-Fulkerson算法解s-t最小割,通过Edmonds ...

  5. HDU 6081 度度熊的王国战略(全局最小割堆优化)

    Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...

  6. HDU 3691 Nubulsa Expo(全局最小割)

    Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...

  7. HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)

    Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...

  8. 全局最小割StoerWagner算法详解

    前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...

  9. 求全局最小割(SW算法)

    hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

随机推荐

  1. c++内联函数解析(inline)

    一.基本定义 inline是C++语言中的一个关键字,可以用于程序中定义内联函数,inline的引进使内联函数的定义更加简单.说到内联函数,这里给出比较常见的定义,内联函数是C++中的一种特殊函数,它 ...

  2. Ubuntu配置NFS服务器

    NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源.在NFS的应用中,本地NFS的客户端应用可 ...

  3. 条款22:将成员变量声明为private(Declare data members private)

    NOTE: 1.切记将成员变量声明为private.这可赋予客户访问数据的一致性 可细微划分访问控制 允诺约束条件获得保证,并提供class作者以充分的实现弹性. 2.protected 并不比pub ...

  4. jquery 打星评分插件

    <link rel="stylesheet" href="/static/vendor/raty/jquery.raty.css"> <scr ...

  5. windows下安装rabbitmq以及php扩展amqp

    先安装RabbitMQ 安装Erlang  下载地址http://www.erlang.org/downloads 我选的是64位 这个根据自己情况下载,双击安装之 安装RabbitMQ 下载地址ht ...

  6. 昨天去面试,这5个Python面试题都被考到了,Python面试题No6

    第1题:字符串的拼接–如何高效的拼接两个字符串? 字符串拼接的几种方法 加号 逗号 直接连接 格式化 join 多行字符串拼接() 加号 print('Python' + 'Plus') 逗号 pri ...

  7. LeetCode(66)Plus One

    题目 Given a non-negative number represented as an array of digits, plus one to the number. The digits ...

  8. POJ 3660 Cow Contest(求图的传递性)

    题意: 给定n头牛, 然后有m个比较, 求出有多少头牛能确定自己的排名. 分析: 假设有一头牛a, 有ki头牛强于自己, kj头牛弱于自己, ki + kj == n-1时, 那么这头牛的排名就确定了 ...

  9. RF新手常见问题总结--(基础篇)

    1. 经常有人问这个元素找不到,一般先排除这两个地方,再自己找找A:是否等待了足够的时间让元素加载 (增加sleep xx, wait Until xxx)B:  仔细查查,这个元素是否进入到另一个f ...

  10. 大数据学习——yum安装tomcat

    https://www.cnblogs.com/jtlgb/p/5726161.html 安装tomcat6 yum install tomcat6 tomcat6-webapps tomcat6-a ...