Do you think that magic is simple? That some hand-waving and muttering incomprehensible blubber is enough to conjure wonderful gardens or a fireball to burn your enemies to ashes?
The reality is a little more complicated than that. To master skills, young wizards spend years studying such subjects as magical analysis and demonology practice.
In fact, Oleg, a student of the Institute of Magic and Common Sorcery (IMCS) is preparing for an exam. And there’s no way he can calculate the Dumbledore determinant. As you might have guessed, he asked you to help him.
Let us remind you the basic definitions just in case you haven’t been visiting lectures on the theory of nonlinear spells. The Gandalf theorem states that any part of subspace can be represented as a vector of magic potentials that is an array of n positive integers. A Dumbledore determinant of this array equals the minimum number of elementary magical transformations required to turn the original array into the array where all elements are equal to one. One elementary magical transformation turns the original array of length k into a new array of length k · (k − 1) / 2. The elements of the new array are greatest common divisors of each pair of elements of the original array. For example, the elementary magical transformation of array {2, 3, 3, 6} turns it into array {gcd(2, 3), gcd(2, 3), gcd(2, 6), gcd(3, 3), gcd(3, 6), gcd(3, 6)}, that is {1, 1, 2, 3, 3, 3}.

Input

The first line contains number n that is the length of the original array (3 ≤ n ≤ 10 000). Next n lines contain the elements of array that are positive integers not exceeding 107.

Output

Output Dumbledore determinant for the array given in the input. If Dumbledore determinant is not defined or it exceeds 1018, output “infinity”.

Samples

input output
3
1
2
3
1
4
2
2
2
2
infinity
Problem Author: Kirill Borozdin

题意:给定N个数,每一轮变换成两两对应的GCD:即变换前是X个数,变换后是X*(X-1)/2个数。如: {2, 3, 3, 6} turns it into array {gcd(2, 3), gcd(2, 3), gcd(2, 6), gcd(3, 3), gcd(3, 6), gcd(3, 6)}, that is {1, 1, 2, 3, 3, 3}.                问第几次变换后全部变为1,如果不行,输出“infinity”。

思路:如果有某一轮变换前有三个或以上的相同的数(不等于1),则不可能全部变为1,如样例的2,2,2。但是不可能模拟每一轮转化的过程。我们换个角度:如果一个因子在大于等于三个数里出现,则者三个数会相互影响,一直繁殖下去.所以答案为:

0:已经全部是1

1:所有数互质

2:有相同因子,但是有同一因子的个数不大于2.

inf:存在一个因子,在操作两个数里出现过。

(坚持A掉题之前不看题解,自己做!!!加油)

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int p[maxn+],vis[maxn+],num[maxn*+],cnt;
void getprime()
{
for(int i=;i<=maxn;i++){
if(!vis[i]) p[++cnt]=i;
for(int j=;j<=cnt&&i*p[j]<=maxn;j++){
vis[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
int main()
{
getprime();
int N,i,j,x;
bool F=true;
scanf("%d",&N);
for(i=;i<=N;i++){
scanf("%d",&x);
if(x!=) F=false;
for(j=;j<=cnt;j++){
if(x%p[j]==){
num[p[j]]++;
while(x%p[j]==) x/=p[j];
}
}
if(x>) num[x]++;
}
if(F) {
printf("0\n");
return ;
}
for(i=;i<=;i++)
if(num[i]>){
printf("infinity\n");
return ;
}
for(i=;i<=;i++)
if(num[i]==){
printf("2\n");
return ;
}
printf("1\n");
return ;
}

Ural 2003: Simple Magic(数论&思维)的更多相关文章

  1. ural 2066. Simple Expression

    2066. Simple Expression Time limit: 1.0 secondMemory limit: 64 MB You probably know that Alex is a v ...

  2. Maximal GCD CodeForces - 803C (数论+思维优化)

    C. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  3. CF 1064B Equations of Mathematical Magic(思维规律)

    Description Colossal! — exclaimed Hawk-nose. — A programmer! That's exactly what we are looking for. ...

  4. [Hdu-5155] Harry And Magic Box[思维题+容斥,计数Dp]

    Online Judge:Hdu5155 Label:思维题+容斥,计数Dp 题面: 题目描述 给定一个大小为\(N*M\)的神奇盒子,里面每行每列都至少有一个钻石,问可行的排列方案数.由于答案较大, ...

  5. 2019牛客多校第三场H Magic Line 思维

    Magic Line 题意 给出n(偶)个整点 整点范围1000,找出一条直线,把n个点分成均等的两部分 分析 因为都是整数,并且范围比较小,所以直接按x排序找到在中间那一部分,并且把中间那一部分的点 ...

  6. URAL 2066 Simple Expression (水题,暴力)

    题意:给定三个数,让你放上+-*三种符号,使得他们的值最小. 析:没什么好说的,全算一下就好.肯定用不到加,因为是非负数. 代码如下: #pragma comment(linker, "/S ...

  7. zoj Simple Equation 数论

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5176 AX+BY = XY  => (X-B)*(Y-A)= ...

  8. URAL 1133 Fibonacci Sequence(数论)

    题目链接 题意 :给你第 i 项的值fi,第 j 项的值是 fj 让你求第n项的值,这个数列满足斐波那契的性质,每一项的值是前两项的值得和. 思路 :知道了第 i 项第j项,而且还知道了每个数的范围, ...

  9. URAL - 2065 Different Sums (思维题)

    题意: 给n和k,让你用不小于 k 个不同的数字构成一个长度为n的序列,使得序列中不同的区间和的数目最小. n,k<=500 k-1个数填一些数字的一正一负,这样有些区间和为0. 剩下的都填0. ...

随机推荐

  1. iOS-runtime-objc_setAssociatedObject(关联对象以及传值)

    例子: static const char kRepresentedObject; - (IBAction)doSomething:(id)sender { UIAlertView *alert = ...

  2. HDU1272 迷宫通路数

    Problem Description 上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该 ...

  3. mappedBy的具体使用及其含义

    mappedBy: 1>只有OneToOne,OneToMany,ManyToMany上才有mappedBy属性,ManyToOne不存在该属性: 2>mappedBy标签一定是定义在被拥 ...

  4. 自用的博客皮肤CSS代码

    是在默认皮肤simple memory的基础上进行的魔改 /*****home和头部开始**************************/ #home { margin: 0 auto; widt ...

  5. php除法的知识点

    php除法的知识点 $a = 7; $b = 3; $c = $a/$b; var_dump($c);//float(2.3333333333333) //整数部分+小数点+小数部分=15位 $b = ...

  6. OO第三单元总结——JML

    目录 写在前面 JML理论基础 JML工具链 JMLUnitNG的使用 架构设计 Bug分析 心得体会 写在前面 OO的第三单元学习结束了,本单元我们学习了如何使用JML语言来对我们的程序进行规格化设 ...

  7. WebLogic中"域"的概念

    WebLogic 版权声明:本文为博主原创文章,未经博主允许不得转载. WebLogic Server中的域是逻辑上相关的一组 WebLogic Server 资源,可以作为一个单元进行管理.一个域中 ...

  8. 微信小程序之 Index(仿淘宝分类入口)

    1.逻辑层 index.js //index.js //获取应用实例 const app = getApp() Page({ /** * 页面的初始数据 */ data: { menu: { imgU ...

  9. Zookeeper 3.4 官方文档翻译

    说明 个人英语水平非常一般,理解可能有偏差,假设有翻译不恰当之处,请看官指点. 1.简单介绍 分布式系统就像动物园.当中每台server就像一仅仅动物,Zookeeper就像动物园管理员,协调.服务于 ...

  10. IIS 配置 FTP 网站 H5 音频标签自定义样式修改以及添加播放控制事件

    IIS 配置 FTP 网站   在 服务器管理器 的 Web服务器IIS 上安装 FTP 服务 在 IIS管理器 添加FTP网站 配置防火墙规则 说明:服务器环境是Windows Server 200 ...