先看看线索二叉树

n个结点的二叉链表中含有n+1(2n-(n-1)=n+1)个空指针域。利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")。
对于n个结点的二叉树,在二叉链存储结构中有n+1个空链域,利用这些空链域存放在某种遍历次序下该结点的前驱结点和后继结点的指针,这些指针称为线索,加上线索的二叉树称为线索二叉树。

概念

这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树后序线索二叉树三种。
注意:
线索链表解决了无法直接找到该结点在某种遍历序列中的前驱和后继结点的问题,出现了二叉链表找左、右孩子困难的问题。
 
 
 
from:https://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html

本文主要解决一个问题,如何实现二叉树的前中后序遍历,有两个要求:

1. O(1)空间复杂度,即只能使用常数空间;

2. 二叉树的形状不能被破坏(中间过程允许改变其形状)。

通常,实现二叉树的前序(preorder)、中序(inorder)、后序(postorder)遍历有两个常用的方法:一是递归(recursive),二是使用栈实现的迭代版本(stack+iterative)。这两种方法都是O(n)的空间复杂度(递归本身占用stack空间或者用户自定义的stack),所以不满足要求。(用这两种方法实现的中序遍历实现可以参考这里。)

Morris Traversal方法可以做到这两点,与前两种方法的不同在于该方法只需要O(1)空间,而且同样可以在O(n)时间内完成。

要使用O(1)空间进行遍历,最大的难点在于,遍历到子节点的时候怎样重新返回到父节点(假设节点中没有指向父节点的p指针),由于不能用栈作为辅助空间。为了解决这个问题,Morris方法用到了线索二叉树(threaded binary tree)的概念。在Morris方法中不需要为每个节点额外分配指针指向其前驱(predecessor)和后继节点(successor),只需要利用叶子节点中的左右空指针指向某种顺序遍历下的前驱节点或后继节点就可以了。

Morris只提供了中序遍历的方法,在中序遍历的基础上稍加修改可以实现前序,而后续就要再费点心思了。所以先从中序开始介绍。

首先定义在这篇文章中使用的二叉树节点结构,即由val,left和right组成:

1 struct TreeNode {
2 int val;
3 TreeNode *left;
4 TreeNode *right;
5 TreeNode(int x) : val(x), left(NULL), right(NULL) {}
6 };

一、中序遍历--cur结点为遍历结点路径,在遍历过程中找到其前驱结点,加入后继信息,如果发现后继信息已经加入,说明当前结点是第二次访问了。这和传统的stack方式本质上一样,因为结点也会二次访问,第一次是在入stack,第二次是pop stack!

步骤:

1. 如果当前节点的左孩子为空,则输出当前节点并将其右孩子作为当前节点。——无前驱结点!

2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。——有前驱则找前驱结点!

a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。当前节点更新为当前节点的左孩子。——后继信息还没有加入,则加入后继信息!然后遍历顺序为left结点。

b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空(恢复树的形状)。输出当前节点。当前节点更新为当前节点的右孩子。——后继信息已经加入,删除原有后继信息,然后遍历顺序为right结点。

3. 重复以上1、2直到当前节点为空。

图示:

下图为每一步迭代的结果(从左至右,从上到下),cur代表当前节点,深色节点表示该节点已输出。

代码:

 1 void inorderMorrisTraversal(TreeNode *root) {
2 TreeNode *cur = root, *prev = NULL;
3 while (cur != NULL)
4 {
5 if (cur->left == NULL) // 1.
6 {
7 printf("%d ", cur->val);
8 cur = cur->right;
9 }
10 else
11 {
12 // find predecessor
13 prev = cur->left;
14 while (prev->right != NULL && prev->right != cur)
15 prev = prev->right;
16
17 if (prev->right == NULL) // 2.a)
18 {
19 prev->right = cur;
20 cur = cur->left;
21 }
22 else // 2.b)
23 {
24 prev->right = NULL;
25 printf("%d ", cur->val);
26 cur = cur->right;
27 }
28 }
29 }
30 }

复杂度分析:

空间复杂度:O(1),因为只用了两个辅助指针。

时间复杂度:O(n)。证明时间复杂度为O(n),最大的疑惑在于寻找中序遍历下二叉树中所有节点的前驱节点的时间复杂度是多少,即以下两行代码:

1 while (prev->right != NULL && prev->right != cur)
2 prev = prev->right;

直觉上,认为它的复杂度是O(nlgn),因为找单个节点的前驱节点与树的高度有关。但事实上,寻找所有节点的前驱节点只需要O(n)时间。n个节点的二叉树中一共有n-1条边,整个过程中每条边最多只走2次,一次是为了定位到某个节点,另一次是为了寻找上面某个节点的前驱节点,如下图所示,其中红色是为了定位到某个节点,黑色线是为了找到前驱节点。所以复杂度为O(n)。

先序遍历的差异代码就一行:

void preorderMorrisTraversal(TreeNode *root) {
TreeNode *cur = root, *prev = NULL;
while (cur != NULL)
{
if (cur->left == NULL)
{
printf("%d ", cur->val);
cur = cur->right;
}
else
{
prev = cur->left;
while (prev->right != NULL && prev->right != cur)
prev = prev->right; if (prev->right == NULL)
{
printf("%d ", cur->val); // the only difference with inorder-traversal
prev->right = cur;
cur = cur->left;
}
else
{
prev->right = NULL;
cur = cur->right;
}
}
}
}

Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)——无非是在传统遍历过程中修改叶子结点加入后继结点信息(传统是stack记录),然后再删除恢复的更多相关文章

  1. [转载]Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)

    本文主要解决一个问题,如何实现二叉树的前中后序遍历,有两个要求: 1. O(1)空间复杂度,即只能使用常数空间: 2. 二叉树的形状不能被破坏(中间过程允许改变其形状). 通常,实现二叉树的前序(pr ...

  2. Morris Traversal 方法遍历二叉树(非递归、不用栈,O(1)空间)

    http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html

  3. Morris Traversal方法遍历

    实现二叉树的遍历且只需要O(1)的空间. 参考:http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html

  4. 【LeetCode-面试算法经典-Java实现】【145-Binary Tree Postorder Traversal(二叉树非递归后序遍历)】

    [145-Binary Tree Postorder Traversal(二叉树非递归后序遍历)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a bin ...

  5. 【LeetCode-面试算法经典-Java实现】【144-Binary Tree Preorder Traversal(二叉树非递归前序遍历)】

    [144-Binary Tree Preorder Traversal(二叉树非递归前序遍历)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a bina ...

  6. c/c++二叉树的创建与遍历(非递归遍历左右中,破坏树结构)

    二叉树的创建与遍历(非递归遍历左右中,破坏树结构) 创建 二叉树的递归3种遍历方式: 1,先中心,再左树,再右树 2,先左树,再中心,再右树 3,先左树,再右树,再中心 二叉树的非递归4种遍历方式: ...

  7. c/c++叉树的创建与遍历(非递归遍历左右中,不破坏树结构)

    二叉树的创建与遍历(非递归遍历左右中,不破坏树结构) 创建 二叉树的递归3种遍历方式: 1,先中心,再左树,再右树 2,先左树,再中心,再右树 3,先左树,再右树,再中心 二叉树的非递归4种遍历方式: ...

  8. C++版 - LeetCode 144. Binary Tree Preorder Traversal (二叉树先根序遍历,非递归)

    144. Binary Tree Preorder Traversal Difficulty: Medium Given a binary tree, return the preorder trav ...

  9. C++编程练习(17)----“二叉树非递归遍历的实现“

    二叉树的非递归遍历 最近看书上说道要掌握二叉树遍历的6种编写方式,之前只用递归方式编写过,这次就用非递归方式编写试一试. C++编程练习(8)----“二叉树的建立以及二叉树的三种遍历方式“(前序遍历 ...

随机推荐

  1. Jmeter用于接口测试中,关联如何实现

    Jmeter用于接口测试时,后一个接口经常需要用到前一次接口返回的结果,应该如何获取前一次请求的结果值,应用于后一个接口呢,拿一个登录的例子来说明如何获取. 1.打开jmeter, 使用的3.3的版本 ...

  2. Go 方法和接收者

    package main import ( "fmt" ) //面向对象 //go仅支持封装,不支持继承和多态 //go语言中没有class,只要struct //不论地址还是结构 ...

  3. BZOJ1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机

    n<=200个点m<=40000条边无向图,求   t次走不经过同条边的路径从1到n的经过的边的最大值   的最小值. 最大值最小--二分,t次不重边路径--边权1的最大流. #inclu ...

  4. django学习之- 动态验证码学习

    实例:通过前台和后台,实现用户登录页面动态图片验证码校验,图片验证码部分使用Pillow模块实现,作为单独学习部分记录. 前端: <!DOCTYPE html> <html lang ...

  5. python学习之- 内置函数

    内置方法:1:abs():取绝对值2:all():当可迭代对象里所有均为真时结果为真. all([1,2,3])3:any():当可迭代对象里任意一个数据为真结果即为真.any([0,1,2])4:a ...

  6. SOJ 4467 easyproblem 2【欧拉函数 最大公因数和】

    这题wa的莫名其妙,郁闷了一下午,队友暴力一发跟我答案也是一样.后来队友说试试把%I64d换成%lld,果然一下ac...(暴露了在soj做题少.. ac之后排在ranklist的最后一名...目前也 ...

  7. JavaScript 中 for 循环

    在ECMAScript5(简称 ES5)中,有三种 for 循环,分别是: 简单for循环 for-in forEach 在2015年6月份发布的ECMAScript6(简称 ES6)中,新增了一种循 ...

  8. Java实现敏感词过滤代码

    原文:http://www.open-open.com/code/view/1445762764148 import java.io.BufferedReader; import java.io.Fi ...

  9. DELPHI最新的产品路线图

    1)根据众多像您一样的客户要求,我们改为一年一个重大版本及更多更新.这个计划回到一年发布周期并提供额外的2或3个包含附加功能及支持期间发布的新版操作系统的更新. 2)在 RAD Studio  10. ...

  10. @Retention n. 保留

    @Retention n. 保留 学习了:https://blog.csdn.net/asdgbc/article/details/70196749 默认都是保留到class中,而在runtime中没 ...