Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)——无非是在传统遍历过程中修改叶子结点加入后继结点信息(传统是stack记录),然后再删除恢复
-
先看看线索二叉树

概念
本文主要解决一个问题,如何实现二叉树的前中后序遍历,有两个要求:
1. O(1)空间复杂度,即只能使用常数空间;
2. 二叉树的形状不能被破坏(中间过程允许改变其形状)。
通常,实现二叉树的前序(preorder)、中序(inorder)、后序(postorder)遍历有两个常用的方法:一是递归(recursive),二是使用栈实现的迭代版本(stack+iterative)。这两种方法都是O(n)的空间复杂度(递归本身占用stack空间或者用户自定义的stack),所以不满足要求。(用这两种方法实现的中序遍历实现可以参考这里。)
Morris Traversal方法可以做到这两点,与前两种方法的不同在于该方法只需要O(1)空间,而且同样可以在O(n)时间内完成。
要使用O(1)空间进行遍历,最大的难点在于,遍历到子节点的时候怎样重新返回到父节点(假设节点中没有指向父节点的p指针),由于不能用栈作为辅助空间。为了解决这个问题,Morris方法用到了线索二叉树(threaded binary tree)的概念。在Morris方法中不需要为每个节点额外分配指针指向其前驱(predecessor)和后继节点(successor),只需要利用叶子节点中的左右空指针指向某种顺序遍历下的前驱节点或后继节点就可以了。
Morris只提供了中序遍历的方法,在中序遍历的基础上稍加修改可以实现前序,而后续就要再费点心思了。所以先从中序开始介绍。
首先定义在这篇文章中使用的二叉树节点结构,即由val,left和right组成:
1 struct TreeNode {
2 int val;
3 TreeNode *left;
4 TreeNode *right;
5 TreeNode(int x) : val(x), left(NULL), right(NULL) {}
6 };
一、中序遍历--cur结点为遍历结点路径,在遍历过程中找到其前驱结点,加入后继信息,如果发现后继信息已经加入,说明当前结点是第二次访问了。这和传统的stack方式本质上一样,因为结点也会二次访问,第一次是在入stack,第二次是pop stack!
步骤:
1. 如果当前节点的左孩子为空,则输出当前节点并将其右孩子作为当前节点。——无前驱结点!
2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。——有前驱则找前驱结点!
a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。当前节点更新为当前节点的左孩子。——后继信息还没有加入,则加入后继信息!然后遍历顺序为left结点。
b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空(恢复树的形状)。输出当前节点。当前节点更新为当前节点的右孩子。——后继信息已经加入,删除原有后继信息,然后遍历顺序为right结点。
3. 重复以上1、2直到当前节点为空。
图示:
下图为每一步迭代的结果(从左至右,从上到下),cur代表当前节点,深色节点表示该节点已输出。
代码:

1 void inorderMorrisTraversal(TreeNode *root) {
2 TreeNode *cur = root, *prev = NULL;
3 while (cur != NULL)
4 {
5 if (cur->left == NULL) // 1.
6 {
7 printf("%d ", cur->val);
8 cur = cur->right;
9 }
10 else
11 {
12 // find predecessor
13 prev = cur->left;
14 while (prev->right != NULL && prev->right != cur)
15 prev = prev->right;
16
17 if (prev->right == NULL) // 2.a)
18 {
19 prev->right = cur;
20 cur = cur->left;
21 }
22 else // 2.b)
23 {
24 prev->right = NULL;
25 printf("%d ", cur->val);
26 cur = cur->right;
27 }
28 }
29 }
30 }

复杂度分析:
空间复杂度:O(1),因为只用了两个辅助指针。
时间复杂度:O(n)。证明时间复杂度为O(n),最大的疑惑在于寻找中序遍历下二叉树中所有节点的前驱节点的时间复杂度是多少,即以下两行代码:
1 while (prev->right != NULL && prev->right != cur)
2 prev = prev->right;
直觉上,认为它的复杂度是O(nlgn),因为找单个节点的前驱节点与树的高度有关。但事实上,寻找所有节点的前驱节点只需要O(n)时间。n个节点的二叉树中一共有n-1条边,整个过程中每条边最多只走2次,一次是为了定位到某个节点,另一次是为了寻找上面某个节点的前驱节点,如下图所示,其中红色是为了定位到某个节点,黑色线是为了找到前驱节点。所以复杂度为O(n)。
先序遍历的差异代码就一行:
void preorderMorrisTraversal(TreeNode *root) {
TreeNode *cur = root, *prev = NULL;
while (cur != NULL)
{
if (cur->left == NULL)
{
printf("%d ", cur->val);
cur = cur->right;
}
else
{
prev = cur->left;
while (prev->right != NULL && prev->right != cur)
prev = prev->right; if (prev->right == NULL)
{
printf("%d ", cur->val); // the only difference with inorder-traversal
prev->right = cur;
cur = cur->left;
}
else
{
prev->right = NULL;
cur = cur->right;
}
}
}
}
Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)——无非是在传统遍历过程中修改叶子结点加入后继结点信息(传统是stack记录),然后再删除恢复的更多相关文章
- [转载]Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)
本文主要解决一个问题,如何实现二叉树的前中后序遍历,有两个要求: 1. O(1)空间复杂度,即只能使用常数空间: 2. 二叉树的形状不能被破坏(中间过程允许改变其形状). 通常,实现二叉树的前序(pr ...
- Morris Traversal 方法遍历二叉树(非递归、不用栈,O(1)空间)
http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html
- Morris Traversal方法遍历
实现二叉树的遍历且只需要O(1)的空间. 参考:http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html
- 【LeetCode-面试算法经典-Java实现】【145-Binary Tree Postorder Traversal(二叉树非递归后序遍历)】
[145-Binary Tree Postorder Traversal(二叉树非递归后序遍历)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a bin ...
- 【LeetCode-面试算法经典-Java实现】【144-Binary Tree Preorder Traversal(二叉树非递归前序遍历)】
[144-Binary Tree Preorder Traversal(二叉树非递归前序遍历)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a bina ...
- c/c++二叉树的创建与遍历(非递归遍历左右中,破坏树结构)
二叉树的创建与遍历(非递归遍历左右中,破坏树结构) 创建 二叉树的递归3种遍历方式: 1,先中心,再左树,再右树 2,先左树,再中心,再右树 3,先左树,再右树,再中心 二叉树的非递归4种遍历方式: ...
- c/c++叉树的创建与遍历(非递归遍历左右中,不破坏树结构)
二叉树的创建与遍历(非递归遍历左右中,不破坏树结构) 创建 二叉树的递归3种遍历方式: 1,先中心,再左树,再右树 2,先左树,再中心,再右树 3,先左树,再右树,再中心 二叉树的非递归4种遍历方式: ...
- C++版 - LeetCode 144. Binary Tree Preorder Traversal (二叉树先根序遍历,非递归)
144. Binary Tree Preorder Traversal Difficulty: Medium Given a binary tree, return the preorder trav ...
- C++编程练习(17)----“二叉树非递归遍历的实现“
二叉树的非递归遍历 最近看书上说道要掌握二叉树遍历的6种编写方式,之前只用递归方式编写过,这次就用非递归方式编写试一试. C++编程练习(8)----“二叉树的建立以及二叉树的三种遍历方式“(前序遍历 ...
随机推荐
- 大数据学习——hadoop集群搭建2.X
1.准备Linux环境 1.0先将虚拟机的网络模式选为NAT 1.1修改主机名 vi /etc/sysconfig/network NETWORKING=yes HOSTNAME=itcast ### ...
- AR+ 实时音视频通话,虚拟与现实无缝结合
今年中旬 Google 在万众期待下推出了 ARCore,能将现实与数码完美无缝地融合在一起,丰富我们的现实世界.通过它开发者可以更加快速方便地在 Android 平台开发 AR 应用,凭借 AR 技 ...
- hdu1856 选出更多的孩子
题目大意: 老师选取2个学生对应的号码,这两人视作朋友,同时朋友的朋友也可以看成自己的朋友. 最后老师选出一个人数最多的朋友圈. 这里学生的人数不大于10^7,所以操作时需要极为注意,操作步数能省则省 ...
- 9.6——string类型
string: getline(is,s):从输入流is读入到字符串s中 s1+s2:将两个字符串连接起来 构造string一些方法: 1)string s(cp,n):将s初始化为cp所指的n个字符 ...
- transient 关键字
java语言的关键字,变量修饰符,如果用transient声明一个实例变量,当对象存储时,它的值不需要维持.换句话来说就是,用transient关键字标记的成员变量不参与序列化过程. 作用 Jav ...
- POJ 3666 Making the Grade【DP】
读题堪忧啊,敲完了才发现理解错了..理解题必须看样例啊!! 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#pro ...
- HDU 1074 Doing Homework【状态压缩DP】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题意: 给定作业截止时间和完成作业所需时间,比截止时间晚一天扣一分,问如何安排作业的顺序使得最 ...
- Knockout.js用jquery的val设置值不更新
用如下方法,加上change() .val("blah").change()
- Web容器自己主动对HTTP请求中參数进行URLDecode处理
这篇文章转载自 : Web容器自己主动对HTTP请求中參数进行URLDecode处理 如题.在Java中或许非常多人都没有注意到当我们发送一个http请求时,假设附带的參数被URLEncode之后,到 ...
- 【深度探索c++对象模型】Function语义学之成员函数调用方式
非静态成员函数 c++的设计准则之一就是:非静态成员函数至少和一般的非成员函数有相同的效率.编译器内部已将member函数实体转换为对等的nonmember函数实体. 转化步骤: 1.改写函数原型以安 ...