Strange Way to Express Integers
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 8005   Accepted: 2378

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31
题目大意:k个模线性方程求解
AC代码:
#include <iostream>
using namespace std; __int64 Extended_Euclid(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
__int64 t,d;
if(b==)
{x=;y=;return a;}
d = Extended_Euclid(b,a%b,x,y);
t = x;
x=y;
y=t-(a/b)*y;
return d;
} __int64 CRT(__int64 n)
{
__int64 i,x,y;
__int64 d,c,t,m,b,mm,bb;
int flag=;
scanf("%I64d %I64d",&m,&b);
mm=m;bb=b;
if(n==)
return b%m;
for(i=;i<n;i++)
{
scanf("%I64d %I64d",&m,&b);
if(flag)
{
d=Extended_Euclid(mm,m,x,y);
c=b-bb;
if(c%d)
flag=;
else
{
t=m/d;
bb=mm*((c/d*x%t+t)%t)+bb;
mm=mm*m/d;
}
}
}
if(flag)
return bb%mm;
else
return -;
}
int main()
{
int n;
while(cin>>n)
printf("%I64d\n",CRT(n));
return ;
}

poj 2891 模线性方程组求解的更多相关文章

  1. POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)

    题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...

  2. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  3. hihoCoder 1303 数论六·模线性方程组

    Description 求解模线性方程组, \(m_i\) 不互质. Sol 扩展欧几里得+中国剩余定理. 首先两两合并跟上篇博文一样. 每次通解就是每次增加两个数的最小公倍数,这对取模任意一个数都是 ...

  4. hiho一下 第九十七周 数论六·模线性方程组

    题目1 : 数论六·模线性方程组 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军 ...

  5. Strange Way to Express Integers (一般模线性方程组)

    Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8476   Accepted: 2554 Description Elin ...

  6. poj 2891 Strange Way to Express Integers (扩展gcd)

    题目链接 题意:给k对数,每对ai, ri.求一个最小的m值,令m%ai = ri; 分析:由于ai并不是两两互质的, 所以不能用中国剩余定理. 只能两个两个的求. a1*x+r1=m=a2*y+r2 ...

  7. Poj 2187 凸包模板求解

    Poj 2187 凸包模板求解 传送门 由于整个点数是50000,而求凸包后的点也不会很多,因此直接套凸包之后两重循环即可求解 #include <queue> #include < ...

  8. POJ 2891 Strange Way to Express Integers 中国剩余定理解法

    一种不断迭代,求新的求余方程的方法运用中国剩余定理. 总的来说,假设对方程操作.和这个定理的数学思想运用的不多的话.是非常困难的. 參照了这个博客的程序写的: http://scturtle.is-p ...

  9. 【hihocoder 1303】模线性方程组

    [题目链接]:http://hihocoder.com/problemset/problem/1303 [题意] [题解] /* x % m[1] = r[1] x % m[2] = r[2] x = ...

随机推荐

  1. access处理重复创建表的方法。

    第一种,使用MSysObjects表查找表名为当前创建表的名字的内容,相当于普通查询,但是access数据库有一个安全问题,就是有时候一开始是没有权限去调这些系统表的,这时可以再2007的access ...

  2. WPF知识点全攻略09- 附加属性

    附加属性也是一种特殊的依赖属性. Canvas中的Canvas.Left,Canvas.Top ,DockPanel中DockPanel.Dock等就是附加属性. 更加.NET类属性的写法经验.这个中 ...

  3. 数据库_5_MySQL数据库介绍

    一.MySQL数据库 MySQL:MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理系统之一,在 WEB ...

  4. Open Scene Graph:让VS支持不含后缀的头文件

    让VS支持不含后缀的头文件 看OSG源码时,会遇到不含后缀的头文件无定位信息的尴尬,很让人苦恼. 就是单击VS中“工具菜单栏”——>”选项(O)….”如下图所示: 菜单项,弹出选项对话框,单击“ ...

  5. Spring对注解(Annotation)处理【转】

    1.从Spring2.0以后的版本中,spring也引入了基于注解(Annotation)方式的配置,注解(Annotation)是JDK1.5中引入的一个新特性,用于简化Bean的配置,某些场合可以 ...

  6. MYSQL - 限制资源的使用

    MYSQL - 限制资源的使用 1.MAX_QUERIES_PER_HOUR 用来限制用户每小时运行的查询数量 mysql> grant select on *.* to 'cu_blog'@' ...

  7. ios之UISplitViewController

    iPad的屏幕比iPhone大,所以在界面上,iPad比iPhone多一个UISplitViewController,用来实现iPad在横屏时,分两栏显示所需要的界面,可以一边是目录一边是具体的内容. ...

  8. 详解Mac睡眠模式设置

    详解Mac睡眠模式设置 原文链接:http://www.insanelymac.com/forum/index.php?showtopic=281945 需要说明的是,首先这篇文章是针对已经能够成功睡 ...

  9. verilog behavioral modeling--branch statement

    conditional statement case statement 1. conditional statement     if(expression)         statement_o ...

  10. kafka异常问题汇总

    1.报错:: java.util.concurrent.ExecutionException: org.apache.kafka.common.errors.NotLeaderForPartition ...