HDU——4549M斐波那契数列(矩阵快速幂+快速幂+费马小定理)
M斐波那契数列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2598 Accepted Submission(s): 774
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
6 10 2
60
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x) memset(x,0,sizeof(x))
#define MMINF(x) memset(x,INF,sizeof(x))
typedef long long LL;
const double PI=acos(-1.0);
const LL mod=1000000007;
struct mat
{
LL pos[2][2];
mat(){MM(pos);}
};
mat operator*(const mat &a,const mat &b)
{
mat c;
for (int i=0; i<2; i++)
{
for (int j=0; j<2; j++)
{
for (int k=0; k<2; k++)
c.pos[i][j]+=(a.pos[i][k]*b.pos[k][j])%(mod-1);
}
}
return c;
}
mat operator^(mat a,LL b)
{
mat r;
for (int i=0; i<2; i++)
r.pos[i][i]=1;
while (b!=0)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
LL qpow(LL a,LL b)
{
LL r=1;
a%=mod;
while (b)
{
if(b&1)
r=(r*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return r;
}
int main(void)
{
LL pa,pb;
LL a,b,c,n;
while (~scanf("%I64d%I64d%I64d",&a,&b,&n))
{
if(n==0)
printf("%I64d\n",a);
else if(n==1)
printf("%I64d\n",b);
else
{
mat t,one;
t.pos[0][0]=1;
t.pos[0][1]=1;
t.pos[1][0]=1;
one.pos[0][0]=1;
one.pos[1][0]=1;
t=t^(n-2);
one=t*one;
pa=one.pos[1][0]%(mod-1);
pb=one.pos[0][0]%(mod-1);
printf("%I64d\n",(qpow(a,pa)*qpow(b,pb))%mod);
}
}
return 0;
}
HDU——4549M斐波那契数列(矩阵快速幂+快速幂+费马小定理)的更多相关文章
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- Actionbar Demo
源码下载:http://download.csdn.net/detail/bx276626237/8874119
- rhythmbox插件开发笔记2:背景知识学习 D-Bus&VFS&Gio& Python GTK+ 3
这次主要简单介绍下相关的背景知识 D-Bus&VFS&Gio& Python GTK+ 3 D-Bus D-Bus是开源的进程通信(IPC)系统,它允许多个进程进行实时通信. ...
- Cannot fetch index base URL https://pypi.python.org/pypi/ 解决方法
vi /etc/resolv.conf # Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8) # ...
- 快学UIautomator之uiautomatorhelp使用
1.先下载uiautomatorhelp插件 2.把uiautomatorhelp.java包放到自己的项目中 3.项目中引入uiautomatorhelp插件 4.在项目中设置一个main方法,引入 ...
- CPP-基础:cout
C++编程语言互换流中的标准输出流,需要iostream.h支持.读为 "c out". 使用范例 //用户输入的数字由cin保存于变量a中,并通过cout输出. #include ...
- nyoj-586-疯牛|poj-2456-Aggressive cows
http://acm.nyist.net/JudgeOnline/problem.php?pid=586 http://poj.org/problem?id=2456 解题思路:最大化最小值二分答案即 ...
- jpeg和jpg的区别是什么
JPG是JPEG的简写,jpg是后缀名,jpeg既可作为后缀名,又能代表文件格式:JPG——JPEG文件格式. 我们在系统自带的画图程序里保存文件,在保存类型:JPEG(*.JPG,*.JPEG,*. ...
- 用事件队列解决GUI的操作顺序问题(Qt中处理方法)
GUI操作顺序问题引发异常: 有时候我们使用写GUI程序的时候会遇到这样的问题:比如在程序中,建立了一个列表的GUI.这个列表是随着时间不断更新的,而且操作也会读取这个列表GUI的内容. 如果这个程序 ...
- jquery操作滚动条滚动到指定元素位置 scrollTop
$('.brand_t a').bind('click',function(){ if($(this).attr('title1')){ var toChar = $(this).attr('titl ...
- java 一个对象多少大,占用多少内存
1.instrumentation这种方法还是靠谱的 一个对象占用多少字节? 2.sizeof库 <!-- https://mvnrepository.com/artifact/com.carr ...