[ZJOI2007]时态同步 (树形DP)
题目描述
小 Q在电子工艺实习课上学习焊接电路板。一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字 1,2,3….进行标号。电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点,都存在且仅存在一条通路(通路指连接两个元件的导线序列)。
在电路板上存在一个特殊的元件称为“激发器”。当激发器工作后,产生一个激励电流,通过导线传向每一个它所连接的节点。而中间节点接收到激励电流后,得到信息,并将该激励电流传向与它连接并且尚未接收到激励电流的节点。最终,激烈电流将到达一些“终止节点”――接收激励电流之后不再转发的节点。
激励电流在导线上的传播是需要花费时间的,对于每条边 e,激励电流通过它需要的时间为 te ,而节点接收到激励电流后的转发可以认为是在瞬间完成的。现在这块电路板要求每一个“终止节点”同时得到激励电路――即保持时态同步。由于当前的构造并不符合时态同步的要求,故需要通过改变连接线的构造。目前小 Q有一个道具,使用一次该道具,可以使得激励电流通过某条连接导线的时间增加一个单位。请问小Q最少使用多少次道具才可使得所有的“终止节点”时态同步?
输入输出格式
输入格式:
第一行包含一个正整数 N ,表示电路板中节点的个数。
第二行包含一个整数 S ,为该电路板的激发器的编号。
接下来 N−1行,每行三个整数 a,b,t。表示该条导线连接节点 a 与节点 b,且激励电流通过这条导线需要 t个单位时间。
输出格式:
仅包含一个整数 V ,为小 Q 最少使用的道具次数。
输入输出样例
输入样例#1:
3
1
1 2 1
1 3 3
输出样例#1:
2
说明
对于 40%40%40% 的数据, N≤1000
对于 100%100%100% 的数据, N≤500000
对于所有的数据, te≤1000000
Solution
这道题,一开始想了一个很简单的贪心思路.
即先做一遍 遍历 ,找出当前到根节点距离最大的点的距离.
然后,再用 遍历一遍,将每个点都改成这个点的距离.再加到答案.结果发现全 WA ...
然后想了想,发现这样子会把我刚才统计到的最大的那个点也修改掉.然后就会导致不符合...
所以,再想了下优化,那么我们每次都统计一遍当前这个节点的子节点中到根节点距离最大的那个点.
那么我们每一需要修改的就是当前这个点的子树的最大距离减去其去往的点的子树的最大距离.
然后再搜一遍即可.
代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn=500008;
struct sj{
ll to;
ll next;
ll w;
}a[maxn*2];
ll size,head[maxn];
ll n,s,v[maxn],tag;
ll now,f[maxn],ans;
void add(ll x,ll y,ll z)
{
a[++size].to=y;
a[size].next=head[x];
head[x]=size;
a[size].w=z;
}
void pre(ll x)
{
v[x]=1;
for(ll i=head[x];i;i=a[i].next)
{
ll tt=a[i].to;
if(!v[tt])
{
pre(tt);
f[x]=max(f[x],f[tt]+a[i].w);
}
}
}
void dfs(ll x)
{
v[x]=1;
for(ll i=head[x];i;i=a[i].next)
{
ll tt=a[i].to;
if(!v[tt])
{
dfs(tt);
ans+=f[x]-f[tt]-a[i].w;
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin>>n>>s;
for(ll i=1;i<n;i++)
{
ll x,y,s;
cin>>x>>y>>s;
add(x,y,s);
add(y,x,s);
}
pre(s);
memset(v,0,sizeof(v));
dfs(s);
cout<<ans<<endl;
}
[ZJOI2007]时态同步 (树形DP)的更多相关文章
- 【BZOJ1060】[ZJOI2007]时态同步 树形DP
[BZOJ1060][ZJOI2007]时态同步 Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3-.进行标号.电路 ...
- BZOJ 1060: [ZJOI2007]时态同步( 树形dp )
坑爹...数据是错的..详见discuss http://www.lydsy.com/JudgeOnline/wttl/wttl.php?pid=1060 先求根到叶子的距离最大值x, 然后把所有叶 ...
- [BZOJ1060][ZJOI2007]时态同步 树形dp
Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数 字1,2,3….进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路 ...
- BZOJ1060: [ZJOI2007]时态同步(树形dp 贪心)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3285 Solved: 1286[Submit][Status][Discuss] Descript ...
- Luogu P1131 [ZJOI2007]时态同步 树形DP
要自下向上调整,尽可能用一个道具修改多个: 搜的时候记录叶节点的最大深度,减一下就好了. #include<cstdio> #include<iostream> #includ ...
- 洛谷 1131 [ZJOI2007]时态同步——树形dp
题目:https://www.luogu.org/problemnew/show/P1131 因为越高,调节一个影响到的越多,所以底下只要把子树间的差异消除了就行了,与其他部分的差异由更高的边调节. ...
- 洛谷 P1131 [ZJOI2007]时态同步 树形DP
题目描述 分析 我们从根节点开始搜索,搜索到叶子节点,回溯的时候进行维护 先维护节点的所有子节点到该节点最大边权(边权为叶子节点到同时到达它所需要时间) 然后维护答案,答案为最大边权减去所有到子节点的 ...
- 【BZOJ-1060】时态同步 树形DP (DFS爆搜)
1060: [ZJOI2007]时态同步 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2101 Solved: 595[Submit][Statu ...
- LG1131 「ZJOI2007」时态同步 树形DP
问题描述 LG1131 题解 正难则反,把从一个点出发到叶子结点看做从叶子结点走到那个点. DP方程很显然. \(\mathrm{Code}\) #include<bits/stdc++.h&g ...
随机推荐
- COGS 36. 求和问题
时间限制:1.2 s 内存限制:128 MB [问题描述] 在一个长度为n的整数数列中取出连续的若干个数,并求它们的和. [输入格式] 输入由若干行组成,第一行有一个整数n ...
- Python学习日志_2017/09/09
今天早晨学习<Head First HTML and CSS>.随着内容逐渐深入,知识量逐渐增加,今天早晨三个小时学习了一章:<Html的基本元素>,学到了不少的东西.比如,什 ...
- Matplotlib_常用图表
Matplotlib绘图一般用于数据可视化 1.常用的图表有: 折线图(坐标系图) 散点图/气泡图 条形图/柱状图 饼图 直方图 箱线图 热力图 折线图(坐标系图) 折线图用于显示随时间或有序类别的变 ...
- WINDOWS-API:取得系统语言种类-GetOEMCP
GetOEMCP VB声明 Declare Function GetOEMCP Lib "kernel32" Alias "GetOEMCP" () As Lo ...
- Gradle配置最佳实践
https://blog.csdn.net/devilnov/article/details/53321164 本文会不定期更新,推荐watch下项目.如果喜欢请star,如果觉得有纰漏请提交issu ...
- Shell脚本调用Oralce数据库SQL文生产日志
#!/bin/shexport LANG="zh.CN.GBK" echo -n "******************************************* ...
- java在线聊天项目 swt可视化窗口Design 重新设计好友列表窗口 增加菜单栏
增加的菜单栏效果图如下: eclipse 中调整到 swt的design视图下 控件区域选择Menu Controls 将Menu Bar拖动到窗口标题栏 将Cascaded Menu拖动到Menu ...
- bzoj5183 [Baltic2016]Park
题目描述: bz luogu 题解: 把坐标系看反了持续$WA$系列. 对偶图+并查集维护. 先处理出树对树.树对墙的空隙,然后把人和空隙按从小到大排序. 用并查集维护四面墙之间是否能互相隔断. 代码 ...
- 【分块】[HNOI2010]弹飞绵羊&分块大法祭
分块(似乎还有一种动态树(LCT)做法) 第一次学习分块,似乎有点小激动 这是黄学长的分块入门博客「分块」数列分块入门1 – 9 by hzwer 题目描述 某天,Lostmonkey发明了一种超级弹 ...
- Elasticsearchs的安装/laravel-scout和laravel-scout-elastic的安装
安装: https://github.com/medcl/elasticsearch-rtf 先下载包 下载解压后 cd elasticsearch-rtf-master ll bin/elastic ...