首先把测试数据存储到文件中方便调用。数据矩阵存储在line_data.xls和line_data_melt.xls文件中 (直接拷贝到文件中也可以,这里这么操作只是为了随文章提供个测试文件,方便使用。如果你手上有自己的数据,也可以拿来用)。
profile = "Pos;H3K27ac;CTCF;Enhancer;H3K4me3;polII
-5000;8.7;10.7;11.7;10;8.3
-4000;8.4;10.8;11.8;9.8;7.8
-3000;8.3;10.5;12.2;9.4;7
-2000;7.2;10.9;12.7;8.4;4.8
-1000;3.6;8.5;12.8;4.8;1.3
0;3.6;8.5;13.4;5.2;1.5
1000;7.1;10.9;12.4;8.1;4.9
2000;8.2;10.7;12.4;9.5;7.7
3000;8.4;10.4;12;9.8;7.9
4000;8.5;10.6;11.7;9.7;8.2
5000;8.5;10.6;11.7;10;8.2" profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";")
# tab键分割,每列不加引号
write.table(profile_text, file="line_data.xls", sep="\t", row.names=T, col.names=T,quote=F)
# 如果看着第一行少了ID列不爽,可以填补下
system("sed -i '1 s/^/ID\t/' line_data.xls") profile = "Pos;variable;value;set
-5000;H3K27ac;8.71298;A
-4000;H3K27ac;8.43246;A
-3000;H3K27ac;8.25497;A
-2000;H3K27ac;7.16265;A
-1000;H3K27ac;3.55341;A
0;H3K27ac;3.5503;A
1000;H3K27ac;7.07502;A
2000;H3K27ac;8.24328;A
3000;H3K27ac;8.43869;A
4000;H3K27ac;8.48877;A
-5000;CTCF;10.6913;A
-4000;CTCF;10.7668;A
-3000;CTCF;10.5441;A
-2000;CTCF;10.8635;A
-1000;CTCF;8.45751;A
0;CTCF;8.50316;A
1000;CTCF;10.9143;A
2000;CTCF;10.7022;A
3000;CTCF;10.4101;A
4000;CTCF;10.5757;A
-5000;H3K27ac;8.71298;B
-4000;H3K27ac;8.43246;B
-3000;H3K27ac;8.25497;B
-2000;H3K27ac;7.16265;B
-1000;H3K27ac;3.55341;B
0;H3K27ac;3.5503;B
1000;H3K27ac;7.07502;B
2000;H3K27ac;8.24328;B
3000;H3K27ac;8.43869;B
4000;H3K27ac;8.48877;B
-5000;CTCF;10.6913;B
-4000;CTCF;10.7668;B
-3000;CTCF;10.5441;B
-2000;CTCF;10.8635;B
-1000;CTCF;8.45751;B
0;CTCF;8.50316;B
1000;CTCF;10.9143;B
2000;CTCF;10.7022;B
3000;CTCF;10.4101;B
4000;CTCF;10.5757;B" profile_text <- read.table(text=profile, header=T, quote="",sep=";")
# tab键分割,每列不加引号
write.table(profile_text, file="line_data_melt.xls", sep="\t", row.names=T, col.names=T,quote=F)
# 如果看着第一行少了ID列不爽,可以填补下
system("sed -i '1 s/^/ID\t/' line_data_melt.xls")

使用正常矩阵默认参数绘制个线图

# -f: 指定输入的矩阵文件,第一列为行名字,第一行为header。列数不限,列名字不限;行数不限,行名字默认为文本
# -A FALSE: 指定行名为数字
sp_lines.sh -f line_data.xls -A FALSE
# -l: 设定图例的顺序
# -o TRUE: 局部拟合获得平滑曲线
# -A FALSE: 指定行名为数字
# -P: 设置legend位置,相对于原点的坐标
# -x, -y指定横纵轴标记
sp_lines.sh -f line_data.xls -l "'CTCF','Enhancer','polII','H3K4me3','H3K27ac'" -P 'c(0.8,0.3)' -o TRUE -A FALSE -x 'Up and down 5 kb of TSS' -y 'Relative density'
# -A FALSE: 指定行名为数字
# -V 'c(-1000, 500)': 设置垂线的位置
# -D: 设置垂线的文本标记,参数为引号引起来的vector,注意引号的嵌套
# -I: 设置横轴的标记的位置
# -b: 设置横轴标记的文字
sp_lines.sh -f line_data.xls -A FALSE -V 'c(-1000,500)' -D "c('+1 kb','-0.5 kb')" -I "c(-5000,0,5000)" -b "c('-5 kb', 'TSS', '+5 kb')"
使用melted矩阵默认参数绘制个线图 (除需要改变文件格式,指定-m TRUE -a xvariable外其它与正常矩阵一样)
# -f: 指定输入文件
# -m TRUE: 指定输入的矩阵为melted format, 三列,第一列为Pos (给-a)
# 第二列为variable (给-H,-H默认即为variable)
# 第三列为value,名字不可修改
# -A FALSE: 指定行名为数字
# -P 'c(0.8,0.2)': 设置legend位置,相对于原点的坐标
sp_lines.sh -f line_data_melt.xls -a Pos -m TRUE -A FALSE -P 'c(0.8,0.2)'
完整的图
# -C: 自定义线的颜色
sp_lines.sh -f line_data_melt.xls -a Pos -m TRUE -A FALSE -P 'c(0.8,0.2)' -o TRUE -V 'c(-1000,500)' -D "c('+1 kb','-0.5 kb')" -I "c(-5000,0,4000)" -b "c('-5 kb', 'TSS', '+4 kb')" -x 'Up 5 kb and down 4 kb of TSS' -y 'Relative density' -C "'pink', 'blue'"
数中最需要注意的是引号的使用:
  • 外层引号与内层引号不能相同
  • 凡参数值中包括了空格,括号,逗号等都用引号括起来作为一个整体

R语言学习 - 线图一步法的更多相关文章

  1. R语言学习 - 线图绘制

    线图是反映趋势变化的一种方式,其输入数据一般也是一个矩阵. 单线图 假设有这么一个矩阵,第一列为转录起始位点及其上下游5 kb的区域,第二列为H3K27ac修饰在这些区域的丰度,想绘制一张线图展示. ...

  2. R语言-画线图

    R语言分高水平作图函数和低水平作图函数 高水平作图函数:可以独立绘图,例如plot() 低水平作图函数:必须先运行高水平作图函数绘图,然后再加画在已有的图上面 第一种方法:plot()函数 > ...

  3. R语言学习 - 热图绘制heatmap

    生成测试数据 绘图首先需要数据.通过生成一堆的向量,转换为矩阵,得到想要的数据. data <- c(1:6, 6:1, 6:1, 1:6, (6:1)/10, (1:6)/10, (1:6)/ ...

  4. R语言学习 - 热图简化

    绘制热图除了使用ggplot2,还可以有其它的包或函数,比如pheatmap::pheatmap (pheatmap包中的pheatmap函数).gplots::heatmap.2等.   相比于gg ...

  5. R语言学习 - 热图美化

    实际应用中,异常值的出现会毁掉一张热图.这通常不是我们想要的.为了更好的可视化效果,需要对数据做些预处理,主要有对数转换,Z-score转换,抹去异常值,非线性颜色等方式. 对数转换 为了方便描述,假 ...

  6. R语言学习 第四篇:函数和流程控制

    变量用于临时存储数据,而函数用于操作数据,实现代码的重复使用.在R中,函数只是另一种数据类型的变量,可以被分配,操作,甚至把函数作为参数传递给其他函数.分支控制和循环控制,和通用编程语言的风格很相似, ...

  7. R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)

    箱线图 箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图.在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具.就这样都 ...

  8. R语言学习笔记:基础知识

    1.数据分析金字塔 2.[文件]-[改变工作目录] 3.[程序包]-[设定CRAN镜像] [程序包]-[安装程序包] 4.向量 c() 例:x=c(2,5,8,3,5,9) 例:x=c(1:100) ...

  9. R语言学习2:绘图

    本系列是一个新的系列,在此系列中,我将和大家共同学习R语言.由于我对R语言的了解也甚少,所以本系列更多以一个学习者的视角来完成. 参考教材:<R语言实战>第二版(Robert I.Kaba ...

随机推荐

  1. 使用requireJS的shim參数,完毕jquery插件的载入

    没有requireJS框架之前,假设我们想使用jquery框架,会在HTML页面中通过<script>标签载入.这个时候jquery框架生成全局变量$和jQuery等全局变量.假设项目中引 ...

  2. Python全栈

    Python基础 Python基础01 Hello World! Python基础02 基本数据类型 Python基础03 序列 Python基础04 运算 Python基础05 缩进和选择 Pyth ...

  3. 工作总结 js for 循环遍历 json 数据

    [{"Branch":"Bangkok","2017-01|Replenishment":"0","2017- ...

  4. SQl 事物+视图+游标+索引+锁

    一:事务: 是访问并可能更新数据库中各种数据项的一个程序执行单元(unit),事务是恢复和并发控制的基本单位. 事务的四个特性:ACID A:atomicity 原子性,事务里的所有操作都是一体的,要 ...

  5. ubuntu安装virtualbox

    1.下载 2.sudo dpkg -i virtualbox-5.2_5.2.10-122088_Ubuntu_xenial_amd64.deb $sudo dpkg -i virtualbox-5. ...

  6. Hadoop安装—— WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platf

    今天在安装hadoop完成测试创建用户目录失败在网上找到了原因记录一下原文地址 http://blog.csdn.net/l1028386804/article/details/51538611 配置 ...

  7. Java 技术体系(JDK 与 JRE 的关系)、POJO 与 JavaBeans

    Java 技术体系的分层结构(不同的颜色表示不同的层次),尤其注意 JDK 与 JRE 之间的包含关系: 图见 Java Platform Standard Edition 7 Documentati ...

  8. A bad vacation

    My story happened in the winter of 2012, the first year I began to work in Beijing. It was a cold we ...

  9. IntelliJ IDEA 安装目录的核心文件讲解

    转自:https://blog.csdn.net/qq_35246620/article/details/61916751 首先,我们回顾一下前两篇关于 IntelliJ IDEA 的博文的内容: 在 ...

  10. 谷歌浏览器(Chrome)查看http报文headers信息

    转自:https://blog.csdn.net/floatdreamed/article/details/79208719 ①打开谷歌浏览器,随意输入要搜索的内容 ②按下F12键,此时会弹出浏览器的 ...