HDU_1227_Fast Food_动态规划
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1227
Fast Food
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2695 Accepted Submission(s): 1142
To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter, which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.
The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as
must be as small as possible.
Write a program that computes the positions of the k depots, such that the total distance sum is minimized.
The input file will end with a case starting with n = k = 0. This case should not be processed.
Output a blank line after each test case.
5
6
12
19
20
27
0 0
Total distance sum = 8
#include<iostream>
#include<cstdio>
#include<stdlib.h>
#include<cstring>
using namespace std;
#define LL long long int dis[];
int dist[][];
int dp[][]; int main()
{
int n,k,cases=;
while(scanf("%d%d",&n,&k)!=EOF&&n&&k)
{
memset(dist,,sizeof(dist)); for(int i=; i<=k; i++)
for(int j=; j<=n; j++)
dp[i][j]=;
//cout<<dp[0][0];
dp[][]=;
dp[][]=;
for(int i=; i<=n; i++)
scanf("%d",&dis[i]);
for(int i=; i<=n-; i++)
for(int j=i; j<=n; j++)
{
int mid=(i+j)/;
for(int k=i; k<=j; k++)
dist[i][j]+=abs(dis[mid]-dis[k]);
}
for(int i=;i<=n;i++)
dp[][i]=dist[][i];
for(int j=; j<=n; j++)
for(int i=; i<=j,i<=k; i++)
for(int m=i-; m<=j-; m++)
dp[i][j]=min(dp[i][j],dp[i-][m]+dist[m+][j]); printf("Chain %d\n",cases++);
printf("Total distance sum = %d\n\n",dp[k][n]);
}
return ;
}
HDU_1227_Fast Food_动态规划的更多相关文章
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
- POJ 1163 The Triangle(简单动态规划)
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
随机推荐
- HDU 5402 Travelling Salesman Problem (构造)(好题)
大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...
- Skype for Business七大新功能
Lync Server 2013的下一版本号.Skype for Business将于2015年4月正式公布,下面是七大新功能. "呼叫监听"(Call Monitor)--假设你 ...
- my.os.ClickThisWindow.ClickThisPoint.py
my.os.ClickThisWindow.ClickThisPoint.py
- Hibernate- Criteria 简易
package cn.demo; import java.util.List; import org.hibernate.Criteria; import org.hibernate.Session; ...
- LightTable的结构(一)
LightTable使用clojurescript来生成js,然后使用 node-webkit 来处理UI clojurescript非常适合做抽象程度很高的页面和编辑逻辑结构设计, 最近会对整体进行 ...
- 编译android的一些坑
1 降级gcc g++到4.4 2 参考:http://source.android.com/source/initializing.html来配置环境 3 使用jdk1.6 包括 java java ...
- 自定义Notification实现例子
1.自定义view: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:a ...
- 洛谷 P2585 [ ZJOI 2006 ] 三色二叉树 —— 树形DP
题目:https://www.luogu.org/problemnew/show/P2585 首先,三色其实记录两种状态:是绿色,不是绿色 即可,因为红蓝可以随意取反: 一开始因为懒得还原出树,所以写 ...
- bzoj1778
高斯消元+矩阵的逆 来自popoqqq大神 求矩阵的逆:把I-T放在左边,P/Q*S放在右边,这样就形成了一个n*2n的矩阵,然后把左边高斯消元,右边就是求完逆的矩阵,其实就是ans,矩阵的逆跟乘法逆 ...
- C#直接删除指定目录下的所有文件及文件夹(保留目录)
#region 直接删除指定目录下的所有文件及文件夹(保留目录) /// <summary> /// 直接删除指定目录下的所有文件及文件夹(保留目录) /// </summary&g ...