链接:http://acm.hdu.edu.cn/showproblem.php?pid=1227

Fast Food

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2695    Accepted Submission(s): 1142

Problem Description
The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.

To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter, which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.

The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as

must be as small as possible.

Write a program that computes the positions of the k depots, such that the total distance sum is minimized.

 
Input
The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing one integer each, giving the positions di of the restaurants, ordered increasingly.

The input file will end with a case starting with n = k = 0. This case should not be processed.

 
Output
For each chain, first output the number of the chain. Then output a line containing the total distance sum.

Output a blank line after each test case.

 
Sample Input
6 3
5
6
12
19
20
27
0 0
 
Sample Output
Chain 1
Total distance sum = 8
 
一来没思路,看了题解,目前动态规划的题几乎都看了题解才有思路。。。。。。
思路:[i,j]之间加一个仓库,为了使要增加的路程最短,只能加在第(int)(i+j)/2个餐厅。
case[i][j]为在[i,j]之间加一个仓库所要增加的路程。
dp[i][j]表示在前j个餐厅之中加i个仓库所要走的路程。
状态转移方程:dp[i][j]=min(dp[i][j],dp[i-1][m]+case[m+1][j]);  (i-1<=m<=j-1)
 
#include<iostream>
#include<cstdio>
#include<stdlib.h>
#include<cstring>
using namespace std;
#define LL long long int dis[];
int dist[][];
int dp[][]; int main()
{
int n,k,cases=;
while(scanf("%d%d",&n,&k)!=EOF&&n&&k)
{
memset(dist,,sizeof(dist)); for(int i=; i<=k; i++)
for(int j=; j<=n; j++)
dp[i][j]=;
//cout<<dp[0][0];
dp[][]=;
dp[][]=;
for(int i=; i<=n; i++)
scanf("%d",&dis[i]);
for(int i=; i<=n-; i++)
for(int j=i; j<=n; j++)
{
int mid=(i+j)/;
for(int k=i; k<=j; k++)
dist[i][j]+=abs(dis[mid]-dis[k]);
}
for(int i=;i<=n;i++)
dp[][i]=dist[][i];
for(int j=; j<=n; j++)
for(int i=; i<=j,i<=k; i++)
for(int m=i-; m<=j-; m++)
dp[i][j]=min(dp[i][j],dp[i-][m]+dist[m+][j]); printf("Chain %d\n",cases++);
printf("Total distance sum = %d\n\n",dp[k][n]);
}
return ;
}

HDU_1227_Fast Food_动态规划的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. linux驱动之中断方式获取键值

    linux驱动之中断方式获取键值 ----------------------------------------------------------------------------------- ...

  2. react新特性 react hooks

    本文介绍的是react新特性react hooks,本文面向的是有一定react开发经验的小伙伴,如果你对react还不是很熟悉的话我建议你先学习react并多多联系. 首先我们都知道react有3种 ...

  3. windows server 证书的颁发与IIS证书的使用 Dapper入门使用,代替你的DbSQLhelper Asp.Net MVC中Action跳转(转载)

    windows server 证书的颁发与IIS证书的使用   最近工作业务要是用服务器证书验证,在这里记录下一. 1.添加服务器角色 [证书服务] 2.一路下一步直到证书服务安装完成; 3.选择圈选 ...

  4. Eclipse插件开发中的选择监听机制(Selection Provider-Listener)

    Eclipse插件开发中的选择监听机制(Selection Provider-Listener) 监听机制是eclipse插件开发或rcp应用开发中经常使用的技术,比方点击TableViewer或Tr ...

  5. [swift实战入门]手把手教你编写2048(一)

    苹果设备越来越普及,拿着个手机就想捣鼓点啥,于是乎就有了这个系列,会一步一步教大家学习swift编程,学会自己做一个自己的app,github地址:https://github.com/scarlet ...

  6. Python学习笔记17:标准库之数学相关(math包,random包)

    前面几节看得真心累.如今先来点简单easy理解的内容. 一 math包 math包主要处理数学相关的运算. 常数 math.e   # 自然常数e math.pi  # 圆周率pi 运算函数 math ...

  7. 关于ServerSocketChannel和SocketChannel

    1 这两个类是抽象类 源码里面它们的前面是加了abstract的. 2 抽象类是不能new出实例的 3 这两个类使用静态方法open创建其子类的实例 有动态绑定原理可知,返回的ServerSocket ...

  8. UIColor与十六进制字符串互转

    UIColor转十六进制字符串 方法一:经过测试发现部分颜色会转化为#fffff(五个f),转化残缺导致最后颜色无法还原,不推荐使用. // UIColor转#ffffff格式的字符串 + (NSSt ...

  9. 28. extjs中Ext.BLANK_IMAGE_URL的作用

    转自:https://blog.csdn.net/yiyuhanmeng/article/details/6960132 在使用ExtJS时,我们往往需要在使用之前加入这么一句:Ext.BLANK_I ...

  10. 配置URL