题目:

BZOJ4241

分析:

本校某些julao乱膜的时候发明了个“回滚邹队”,大概意思就是某个姓邹的太菜了进不了省队回滚去文化课

回滚莫队裸题qwq(话说这个名字是不是莫队本人起的啊这么萌zui

首先看到题询问区间信息+没强制在线,妥妥的莫队。然而朴素的莫队(开个桶记每种事件当前的重要度,用set或者堆之类维护一下答案)要\(O(n\sqrt n \log n)\),直接T了……

兔崽子给我说有一种神奇的分块做法,然而我太菜了还没写,先挖个坑以后再补。

然后我去网上orz题解,看到一种叫“回滚莫队”的神奇的东西。可以发现,朴素莫队的问题在于区间变长的时候可以\(O(1)\)更新答案,但是为了维护区间变短必须要套个\(\log n\)的数据结构。所以,如果不存在区间变短的情况,就可以直接\(O(1)\)更新答案,总复杂度\(O(n\sqrt n)\)了。

考虑左端点在同一块中的所有询问,它们的右端点是单调非降的。对于左右端点在同一块中的询问,直接暴力查询即可。否则,设左端点所在块的下一块开头为\(pos\),用一个指针\(r\)往右扫,统计\([pos,r]\)的答案。此时还有\([l,pos)\)的答案没有统计。对于每个询问,暴力\(O(\sqrt n)\)统计这部分答案,最后对两部分答案取\(max\)即可。具体参见代码。

代码:

朴素莫队(TLE):

(一开始离散化写炸了WA了几发……菜死了)

#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <queue>
#include <cmath>
#define _ 0
using namespace std; namespace zyt
{
template<typename T>
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
template<typename T>
inline void write(T x)
{
char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
typedef long long ll;
const int N = 1e5 + 10, Q = 1e5 + 10;
int n, q, block, belong[N], arr[N], tmp[N];
ll ans[N];
struct _ask
{
int l, r, id;
bool operator < (const _ask &b) const
{
return belong[l] == belong[b.l] ? r < b.r : belong[l] < belong[b.l];
}
}ask[Q];
namespace Mo_Algorithm
{
priority_queue<ll> pq, del;
ll num[N];
void update(const int pos, const int x)
{
del.push(num[pos]);
num[pos] += (ll)tmp[pos] * x;
pq.push(num[pos]);
while (!del.empty() && pq.top() == del.top())
pq.pop(), del.pop();
}
void solve(const int maxx)
{
int l = 1, r = 1;
for (int i = 1; i <= maxx; i++)
pq.push(0);
update(arr[1], 1);
for (int i = 1; i <= q; i++)
{
while (l < ask[i].l)
update(arr[l++], -1);
while (l > ask[i].l)
update(arr[--l], 1);
while (r < ask[i].r)
update(arr[++r], 1);
while (r > ask[i].r)
update(arr[r--], -1);
ans[ask[i].id] = pq.top();
}
}
}
int work()
{
read(n), read(q);
block = pow(n, 0.5);
for (int i = 1; i <= n; i++)
{
read(arr[i]), tmp[i] = arr[i];
belong[i] = (i - 1) / block + 1;
}
sort(tmp + 1, tmp + n + 1);
int cnt = unique(tmp + 1, tmp + n + 1) - tmp;
for (int i = 1; i <= n; i++)
arr[i] = lower_bound(tmp + 1, tmp + cnt, arr[i]) - tmp;
for (int i = 1; i <= q; i++)
{
read(ask[i].l), read(ask[i].r);
ask[i].id = i;
}
sort(ask + 1, ask + q + 1);
Mo_Algorithm::solve(cnt);
for (int i = 1; i <= q; i++)
write(ans[i]), putchar('\n');
return (0^_^0);
}
}
int main()
{
return zyt::work();
}

回滚莫队(AC):

#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <queue>
#include <cmath>
#define _ 0
using namespace std; namespace zyt
{
template<typename T>
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
template<typename T>
inline void write(T x)
{
char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
typedef long long ll;
const int N = 1e5 + 10, Q = 1e5 + 10;
int n, q, block, belong[N], arr[N], tmp[N];
ll ans[N];
struct _ask
{
int l, r, id;
bool operator < (const _ask &b) const
{
return belong[l] == belong[b.l] ? r < b.r : belong[l] < belong[b.l];
}
}ask[Q];
inline int begin(const int a)
{
return (a - 1) * block + 1;
}
namespace Mo_Algorithm
{
ll solve_small(const int l, const int r)
{
static ll num[N];
ll ans = 0;
for (int i = l; i <= r; i++)
ans = max(ans, num[arr[i]] += tmp[arr[i]]);
for (int i = l; i <= r; i++)
num[arr[i]] = 0;
return ans;
}
void solve(const int maxx)
{
static ll num[N];
ll now = 0;
int l, r, lbegin;
for (int i = 1; i <= q; i++)
{
if (belong[ask[i].l] != belong[ask[i - 1].l])
{
memset(num, 0, sizeof(ll[maxx + 1]));
lbegin = begin(belong[ask[i].l] + 1), l = lbegin, r = lbegin - 1;
now = 0;
}
if (belong[ask[i].l] == belong[ask[i].r])
ans[ask[i].id] = solve_small(ask[i].l, ask[i].r);
else
{
while (r < ask[i].r)
{
++r;
now = max(now, num[arr[r]] += tmp[arr[r]]);
}
ll bck = now;
while (l > ask[i].l)
{
--l;
now = max(now, num[arr[l]] += tmp[arr[l]]);
}
ans[ask[i].id] = now;
while (l < lbegin)
{
num[arr[l]] -= tmp[arr[l]];
++l;
}
now = bck;
}
}
}
}
int work()
{
read(n), read(q);
block = pow(n, 0.5);
for (int i = 1; i <= n; i++)
{
read(arr[i]), tmp[i] = arr[i];
belong[i] = (i - 1) / block + 1;
}
sort(tmp + 1, tmp + n + 1);
int cnt = unique(tmp + 1, tmp + n + 1) - tmp;
for (int i = 1; i <= n; i++)
arr[i] = lower_bound(tmp + 1, tmp + cnt, arr[i]) - tmp;
for (int i = 1; i <= q; i++)
{
read(ask[i].l), read(ask[i].r);
ask[i].id = i;
}
sort(ask + 1, ask + q + 1);
Mo_Algorithm::solve(cnt);
for (int i = 1; i <= q; i++)
write(ans[i]), putchar('\n');
return (0^_^0);
}
}
int main()
{
return zyt::work();
}

【BZOJ4241】历史研究(回滚莫队)的更多相关文章

  1. BZOJ4241:历史研究(回滚莫队)

    Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...

  2. BZOJ4241历史研究——回滚莫队

    题目描述 IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连 ...

  3. bzoj4241/AT1219 历史研究(回滚莫队)

    bzoj4241/AT1219 历史研究(回滚莫队) bzoj它爆炸了. luogu 题解时间 我怎么又在做水题. 就是区间带乘数权众数. 经典回滚莫队,一般对于延长区间简单而缩短区间难的莫队题可以考 ...

  4. BZOJ.4241.历史研究(回滚莫队 分块)

    题目链接 \(Description\) 长度为n的数列,m次询问,每次询问一段区间最大的 \(A_i*tm_i\) (重要度*出现次数) \(Solution\) 好像可以用莫队做,但是取max的操 ...

  5. 「JOISC 2014 Day1」历史研究 --- 回滚莫队

    题目又臭又长,但其实题意很简单. 给出一个长度为\(N\)的序列与\(Q\)个询问,每个询问都对应原序列中的一个区间.对于每个查询的区间,设数\(X_{i}\)在此区间出现的次数为\(Sum_{X_{ ...

  6. 【题解】BZOJ4241: 历史研究(魔改莫队)

    [题解]BZOJ4241: 历史研究(魔改莫队) 真的是好题啊 题意 给你一个序列和很多组询问(可以离线),问你这个区间中\(\max\){元素出现个数\(\times\)元素权值} IOI国历史研究 ...

  7. AT1219 歴史の研究 回滚莫队

    可在vj上提交:https://vjudge.net/problem/AtCoder-joisc2014_c 题意: IOI 国历史研究的第一人--JOI 教授,最近获得了一份被认为是古代 IOI 国 ...

  8. AT1219 歴史の研究[回滚莫队学习笔记]

    回滚莫队例题. 这题的意思大概是 设 \(cnt_i\) 为 l ~ r 这个区间 \(i\) 出现的次数 求\(m\) 次询问 求 l~r 的 max {\(a_i\) * \(cnt_i\)} \ ...

  9. 2018.08.14 bzoj4241: 历史研究(回滚莫队)

    传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...

随机推荐

  1. python之cookbook-day03

    第一章:数据结构和算法 1.3 保留最后 N 个元素 问题: 在迭代操作或其他操作的时候,怎样只保留最后有限几个元素的历史记录? 解决方案: 保留有限历史记录正是 collections.deque ...

  2. Delphi语法

    类与对象 从用户角度考虑,用户并不需要了解面向对象编程的知识,就可编写Delphi应用程序.当用户在建立新窗体.添加新组件以及处理事件时,大部分相关代码会由Delphi自动产生.但是,知道语言及其细节 ...

  3. poj 1364 查分约束

    #include<stdio.h> #include<iostream> #include<stack> #include<string.h> usin ...

  4. 4种OSS的应用架构及核心技术

        基础型 架构描述:OSS作为文件存储源,用户上传下载数据均经过ECS与OSS通信. 解决用户问题:文件空间大,ECS磁盘存储空间有限:多ECS间无法同步数据. 适用场景描述:文件较多,但文件调 ...

  5. Stockbroker Grapevine POJ 1125 Floyd

    Stockbroker Grapevine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37069   Accepted: ...

  6. P3372 【模板】线段树 1 洛谷

    https://www.luogu.org/problem/show?pid=3372 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 ...

  7. 非常适合新手的jq/zepto源码分析03

    zepto.fragment = function(html, name, properties) { var dom, nodes, container // 如果是简单的标签<div> ...

  8. FLASH BACK

    overview of different flashback technologies flashback query(including flashback query, flashback ve ...

  9. 插件化开发—动态载入技术载入已安装和未安装的apk

    首先引入一个概念,动态载入技术是什么?为什么要引入动态载入?它有什么优点呢?首先要明确这几个问题.我们先从 应用程序入手,大家都知道在Android App中.一个应用程序dex文件的方法数最大不能超 ...

  10. 【Cocos2dx游戏开发】CCNotificationCenter传递消息和数据

    在开发游戏的时候我们经常需要在层与层之间.场景与场景之间传递数据和消息,Cocos2dx框架应用观察者模式为我们封装了一个CCNotificationCenter类,也叫消息通知中心,它也是一个单例类 ...