Codeforces 794F. Leha and security system 线段树
Bankopolis, the city you already know, finally got a new bank opened! Unfortunately, its security system is not yet working fine... Meanwhile hacker Leha arrived in Bankopolis and decided to test the system!
Bank has n cells for clients' money. A sequence from n numbers a1, a2, ..., an describes the amount of money each client has. Leha wants to make requests to the database of the bank, finding out the total amount of money on some subsegments of the sequence and changing values of the sequence on some subsegments. Using a bug in the system, Leha can requests two types of queries to the database:
- 1 l r x y denoting that Leha changes each digit x to digit y in each element of sequence ai, for which l ≤ i ≤ r is holds. For example, if we change in number 11984381 digit 8 to 4, we get 11944341. It's worth noting that Leha, in order to stay in the shadow, never changes digits in the database to 0, i.e. y ≠ 0.
- 2 l r denoting that Leha asks to calculate and print the sum of such elements of sequence ai, for which l ≤ i ≤ r holds.
As Leha is a white-hat hacker, he don't want to test this vulnerability on a real database. You are to write a similar database for Leha to test.
The first line of input contains two integers n and q (1 ≤ n ≤ 105, 1 ≤ q ≤ 105) denoting amount of cells in the bank and total amount of queries respectively.
The following line contains n integers a1, a2, ..., an (1 ≤ ai < 109) denoting the amount of money in each cell initially. These integers do not contain leading zeros.
Each of the following q lines has one of the formats:
- 1 l r x y (1 ≤ l ≤ r ≤ n, 0 ≤ x ≤ 9, 1 ≤ y ≤ 9), denoting Leha asks to change each digit x on digit y for each element ai of the sequence for which l ≤ i ≤ r holds;
- 2 l r (1 ≤ l ≤ r ≤ n), denoting you have to calculate and print the sum of elements ai for which l ≤ i ≤ r holds.
For each second type query print a single number denoting the required sum.
5 5
38 43 4 12 70
1 1 3 4 8
2 2 4
1 4 5 0 8
1 2 5 8 7
2 1 5
103
207
Let's look at the example testcase.
Initially the sequence is [38, 43, 4, 12, 70].
After the first change each digit equal to 4 becomes 8 for each element with index in interval [1; 3]. Thus, the new sequence is [38, 83, 8, 12, 70].
The answer for the first sum's query is the sum in the interval [2; 4], which equal 83 + 8 + 12 = 103, so the answer to this query is 103.
The sequence becomes [38, 83, 8, 12, 78] after the second change and [38, 73, 7, 12, 77] after the third.
The answer for the second sum's query is 38 + 73 + 7 + 12 + 77 = 207.
题意:
给你n个数
操作1:l r x y,区间[l,r]内所有数,数位上为x的都转化为y
操作2: l r 求区间和
题解:
线段树区间合并
建立10颗线段树,分别表示数字0~9所代表的值
将x转化为y也就是在将第x颗线段树区间[l,r]和减去,加到第y颗线段树上
这里的延时操作有点小技巧
每次push_down的时候保持每个点(0~9)指向唯一的另外一个点,这样再更新的时候才不会超时
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 5e5+, M = 1e3+, mod = 1e9+,inf = 2e9; LL sum[N][],H[N],a[N],sum2[];
int lazy[N][],vis[]; void push_down(int i,int ll,int rr) {
if(ll == rr) return ; for(int j = ; j < ; ++j) vis[j] = lazy[ls][j], sum2[j] = sum[ls][j];
for(int j = ; j < ; ++j) {
if(lazy[i][j] != j) {
for(int k = ; k < ; ++k) {
if(lazy[ls][k] == j) vis[k] = lazy[i][j];
}
sum2[lazy[i][j]] += sum[ls][j]; sum2[j] -= sum[ls][j];
}
}
for(int j = ; j < ; ++j)
lazy[ls][j] = vis[j], sum[ls][j] = sum2[j]; for(int j = ; j < ; ++j) vis[j] = lazy[rs][j], sum2[j] = sum[rs][j];
for(int j = ; j < ; ++j) {
if(lazy[i][j] != j) {
for(int k = ; k < ; ++k) {
if(lazy[rs][k] == j) vis[k] = lazy[i][j];
}sum2[lazy[i][j]] += sum[rs][j]; sum2[j] -= sum[rs][j];
}
}
for(int j = ; j < ; ++j)
lazy[rs][j] = vis[j], sum[rs][j] = sum2[j]; for(int j = ; j < ; ++j) lazy[i][j] = j;
} void push_up(int i,int ll,int rr) {
for(int j = ; j <= ; ++j) {
sum[i][j] = sum[ls][j] + sum[rs][j];
}
} void build(int i,int ll,int rr) { for(int j = ; j < ; ++j) lazy[i][j] = j; if(ll == rr) {
for(int j = ; j < ; ++j) sum[i][j] =;
LL tmp = a[ll];
for(int j = ; j <= ; ++j) {
sum[i][tmp%] += H[j-];
tmp/=;
if(tmp == ) break;
}
return ;
} build(ls,ll,mid); build(rs,mid+,rr);
push_up(i,ll,rr);
} void update(int i,int ll,int rr,int x,int y,int f,int s) { push_down(i,ll,rr);
if(ll == x && rr == y) {
for(int j = ; j <= ; ++j)
if(lazy[i][j] == f) {
lazy[i][j] = s;
sum[i][s] += sum[i][f];
sum[i][f] = ;
}
return ;
}
if(y <= mid) update(ls,ll,mid,x,y,f,s);
else if(x > mid) update(rs,mid+,rr,x,y,f,s);
else { update(ls,ll,mid,x,mid,f,s);
update(rs,mid+,rr,mid+,y,f,s); } push_up(i,ll,rr); } LL query(int i,int ll,int rr,int x,int y) {
push_down(i,ll,rr);
if(ll == x && rr == y) {
LL ret = ;
for(int j = ; j <= ; ++j) {
ret += 1LL*j*sum[i][j];
}
return ret;
}
if(y <= mid) return query(ls,ll,mid,x,y);
else if(x > mid) return query(rs,mid+,rr,x,y);
else {
return query(ls,ll,mid,x,mid)+query(rs,mid+,rr,mid+,y);
}
push_up(i,ll,rr); } int n,q; int main() { scanf("%d%d",&n,&q); for(int i = ; i <= n; ++i) {
scanf("%I64d",&a[i]);
} H[] = ;
for(int i = ; i <= ; ++i) H[i] = H[i-]*; build(,,n); for(int i = ; i <= q; ++i) {
int op,x,y,l,r;
scanf("%d",&op);
if(op == ) {
scanf("%d%d%d%d",&l,&r,&x,&y);
if(x == y) continue;
update(,,n,l,r,x,y);
}
else {
scanf("%d%d",&l,&r);
printf("%I64d\n",query(,,n,l,r));
}
} return ;
}
Codeforces 794F. Leha and security system 线段树的更多相关文章
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- [Codeforces 280D]k-Maximum Subsequence Sum(线段树)
[Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- Codeforces 444 C. DZY Loves Colors (线段树+剪枝)
题目链接:http://codeforces.com/contest/444/problem/C 给定一个长度为n的序列,初始时ai=i,vali=0(1≤i≤n).有两种操作: 将区间[L,R]的值 ...
- Codeforces Gym 100513F F. Ilya Muromets 线段树
F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...
- Codeforces 834D The Bakery【dp+线段树维护+lazy】
D. The Bakery time limit per test:2.5 seconds memory limit per test:256 megabytes input:standard inp ...
- codeforces 1017C - Cloud Computing 权值线段树 差分 贪心
https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...
- Codeforces 1045. A. Last chance(网络流 + 线段树优化建边)
题意 给你 \(n\) 个武器,\(m\) 个敌人,问你最多消灭多少个敌人,并输出方案. 总共有三种武器. SQL 火箭 - 能消灭给你集合中的一个敌人 \(\sum |S| \le 100000\) ...
- Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]
洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...
随机推荐
- vue ui组件muse-ui的使用
安装 npm install muse-ui typeface-roboto material-design-icons vuex axios --save Muse UI 是一套 Material ...
- bzoj2973 入门oj4798 石头游戏
我们人为地搞出来一个全能神,每次调用他他可以给一个节点 \(1\) 个石头. 这样,当前的状态就可以由上一秒的状态搞过来,这就像是一个递推.用矩阵加速. #include <iostream&g ...
- 如何安装python包
安装python包有两种方法: 使用Python包管理器pip工具 在Linux系统中,首先 yum install python-pip 然后就可以欢快的pip install *** 啦 源代码安 ...
- k/3cloud表格控件块粘贴代码逻辑
大家可以在表单插件EntityBlockPasting事件中自己处理,然后将cancel设置为true.以下代码可以参考一下,插件代码中需要将其中一些属性或方法修改,例如this.BusinessIn ...
- Visual Studio Code Edit
微软的跨平台编辑器~~ 下载地址(官网):https://code.visualstudio.com/ 下载地址(网盘):http://pan.baidu.com/s/1ntLy8Tr 使用技巧: c ...
- 数据库中的DDL/DML/DCL解释(转)
DDL is Data Definition Language statements. Some examples:数据定义语言,用于定义和管理 SQL 数据库中的所有对象的语言 1.CREATE - ...
- DTrace scripts for Mac OS X
http://www.cnblogs.com/Proteas/p/3727297.html http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtra ...
- 过滤器链chain.doFilter(request,response)含义
过滤器的生命周期一般都要经过下面三个阶段: 初始化 当容器第一次加载该过滤器时,init() 方法将被调用.该类在这个方法中包含了一个指向 Filter Config 对象的引用. 过滤 过滤器的大多 ...
- javax/servlet/ServletContext : Unsupported major.minor version 51.0
原文:http://blog.csdn.net/mlin_123/article/details/50738532 解决:将版本从 3.1.0 改为 3.0.1 <!-- 添加servlet A ...
- 【C++基础 02】深拷贝和浅拷贝
我的主题是.每天积累一点点. =========================================== 在类定义中,假设没有提供自己的拷贝构造函数,则C++提供一个默认拷贝构造函数. C ...